Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of the Effects of Nano-filler Interactions in Polymer Matrix Dielectric Nanocomposites

Y. Jin [1], R. A. Gerhardt [1],
[1] Georgia Institute of Technology, Atlanta, GA, USA

The finite element method was used for simulating the dielectric response of polymer matrix dielectric composites with randomly and evenly distributed fillers. The dielectric simulation of the composite materials was conducted using a time harmonic-electric current solver in the AC/DC Module of the COMSOL Multiphysics® software. The calculations were performed for a wide range of filler contents ...

Natural Refrigeration System Design

A. Prasad [1], O. K. Sacks [1], R. C. Thiagarajan [1],
[1] ATOA Scientific Technologies, Bengaluru, India

This paper deals with the numerical experiments for early prediction of muffler performance at the design stage. In this experiment a Reactive Muffler is developed and validated numerically compared to traditional built and test process.

Time Dependent Simulations of Thermoelectric Thin Films and Nanowires for Direct Determination of their Efficiency with COMSOL Multiphysics®

M. Muñoz Rojo[1], J. Jose Romero[1], D. Ramos[1], D. Borca-Tasciuc[2], T. Borca-Tasciuc[2], M. Martín Gonzalez[1]
[1]Instituto de Microelectrónica de Madrid, Madrid, Spain
[2]Rensselaer Polytechnique Institute, Troy, New York, USA

Thermoelectric materials are one of the most promising materials for future and nowadays energy harvesting devices, as they can convert heat into electricity and vice-versa. The efficiency of thermoelectric materials is related with the figure of merit, ZT. Our work deals with the determination of the parameters that affect the measurement of the ZT with the Harman technique and the best ...

2-D Modeling of Underground Coal Gasification (UCG)

S. Mahajani[1], S. Srikantiah[1], G. Samdani[1], A. Ganesh[1], P. Aghalayam[2]
[1]Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]Indian Institute of Technology Madras, Chennai, India

UCG is a process which converts coal to syn gas at the underground coal seam itself. UCG can help meeting the rising energy demand by utilizing coal resources that otherwise would be too deep, or of poor quality, or simply not economical to mine. As UCG takes place, a cavity is formed underground in the coal seam which grows three-dimensionally. The objective of this work is to develop a two ...

Steps for the Optimization of Pipe and Tubing Extrusion Dies

J.R. Puentes[1], T.A. Osswald[1], S. Schick[2], J. Berg[2]
[1]Polymer Engineering Center, University of Wisconsin, Madison, WI, USA
[2]TEEL Plastics, Baraboo, WI, USA

The extrusion of polyolefin pipes suffers degradation due to mechanical design problems of the extrusion die that is commonly used. This study uses numerical and computational approaches to detect problematic areas in the die geometry. Simulations show that in the conventional die there are areas of stagnation and recirculation of the melt flow, resulting in greater residence times, one of the ...

Comparing Different Approaches for Moisture Transfer Inside Constructions with Air Gaps

L. Nespoli[1], M. Bianchi Janetti[2], F. Ochs[2]
[1]Politecnico di Milano, Milan, Italy
[2]University of Innsbruck, Innsbruck, Austria

A model for the conjugate simulation of heat and moisture transfer inside porous materials and fluid domains is implemented in COMSOL Multiphysics®. The results of this model are compared with those obtained through a simplified approach: the line-source approach. The models are both validated with experimental data and with numerical results from other authors. On the one hand the conjugate ...

Boundary Value Effects on Migration Patterns in Hydraulically Fractured Shale Formations - new

T. Aseeperi[1]
[1]Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA

During the hydraulic fracturing process, there can be possible re-activation of closed/sealed faults and natural fractures in the formation, which may lead to changes in the boundary conditions of the reservoir. While study models of shale gas formations have utilized the concept of a closed reservoir in order to optimize the production of gas in the well-bore, this assumption cannot be adopted ...

Advanced Modeling of Friction Stir Welding – Improved Material Model for Aluminum Alloys and Modeling of Different Materials with Different Properties by Using the Level Set Method

S. Dörfler
Wilhelm Gronbach GmbH, Wasserburg a. Inn, Germany

Friction Stir Welding (FSW) has gained much importance throughout the last years. Beside comprehensive experimental work that has been carried out, the simulation of the welding zone is of major interest.  Due to the high strains observed within the welding zone, the Eulerian (CFD) approach seems to be the most promising for the prediction of flow around the FSW tool. However, the CFD ...

Design of an Anisokinetic Probe for Sampling Radioactive Particles from Ducts of Nuclear Facilities

P. Geraldini [1],
[1] Sogin Spa, Rome, Italy

The aim of this study is to design a new concept of shrouded probe that meets the ISO 2889 requirements and it is suitable for small-ducts installation. In order to reduce the construction costs they have been considered standard stainless steel welding fittings manufactured according to ASME/ANSI specifications. In particular, with the numerical simulations, they have been firstly evaluated ...

Geometric Optimization of Micromixers

M. Jain[1], A. Rao[1], K. Nandakumar[1]
[1]Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA

The performance of a homogeneous T-mixer can be enhanced significantly by the stimulation of secondary/ transverse flows in the microchannel. Various mixing mechanisms are reported for enhancing micromixing performance such as grooves at the channel bottom, heterogeneous charge patterns etc. Most of these micromixers are studied with respect to planar geometric parameters such as groove width, ...