Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Study of Hard-and Soft- Magnetorheological Elastomers (MRE’s) Actuation Capabilities

J. Roche[1], P. Von Lockette[1], and S. Lofland[2]
[1]Mechanical Engineering Dept., Rowan University, Glassboro, NJ
[2]Physics and Astronomy Dept., Rowan University, Glassboro, NJ

In this study, magneto-rheological elastomer (MRE) composite beams made of Barium hexaferrite (BaM) and Iron (Fe) powders combined with a highly-compliant matrix material were simulated using COMSOL\'s Solid Mechanics and AC/DC modules. The goal of the work was to develop models capable of predicting the actuation behavior of hard- and soft-magnetic MREs. This work simulates the bending of ...

FEM Study on the Effect of Metallic Interdigital Transducers on Surface Acoustic Wave(SAW) Velocity in SAW Devices

A. K. Namdeo, and H. B. Nemade
Department of Electronics and Electrical Engineering
Indian Institute of Technology Guwahati
Assam, India

In this paper, we present study on the mass loading effect of the interdigital transducer (IDT) on surface acoustic wave (SAW) velocity in SAW devices, using COMSOL Multiphysics. We have simulated a one port SAW resonator made on YZ lithium niobate substrate and investigated the reduction of SAW velocity caused by the mass loading of aluminum IDT fabricated over the substrate, using finite ...

Design of a Pressure Sensor to Monitor Teeth Grinding

I.M. Abdel-Motaleb[1], K. Ravanasa[1], K.J. Soderholm[2]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA
[2]Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL USA

Studying teeth grinding behavior and other oral conditions requires the ability to accurately measure the pressure on the teeth. Placing a sensor in the mouth requires small size devices with powering and measurement techniques that do not hinder the normal life of the patient. To meet these requirements, we designed, using COMSOL, a small, easy to read MEMS capacitive force sensor, with ...

Modeling Flow and Deformation During Salt-Assisted Puffing of Single Rice Kernels - new

T. Gulati[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Puffing of biomaterials involves mass, momentum and energy transport along with large volumetric expansion of the material. Development of physics-based models that can describe heat and moisture transport, rapid evaporation and large deformations can help understand the puffing process. In this context, a fundamentals based study of salt-assisted puffing of rice is described. A multiphase model ...

Design and Analysis of Microcantilevers for Sensor Applications

R. Phadke [1], R. Pramodhini [1], A. Tiwari [2],
[1] Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India

In this report, we present the design and analysis of microcantilevers of various shapes and materials for different applications. Here we investigate the sensitivity i.e. amount of bending of the cantilever due to same amount of force applied to each of the shape and the respective material using COMSOL Multiphysics software. In this context, we are restricted to the use of microcantilevers in ...

A Parametric Study on the Dynamic Behavior of Cable Supported Bridges Under Moving Loads Affected by Accidental Failure Mechanisms

P. Lonetti[1], A. Pascuzzo[1], R. Sarubbo[1]
[1]Department of Structural Engineering, University of Calabria, Rende, Cosenza, Italy

The dynamic behavior of cable supported bridges subjected to moving loads and affected by corrosion and accidental failure mechanism in the cable suspension system is investigated. The different types of cable supported bridges are distinctively characterized by the configuration of the cable system [1]. The suspension system comprises a parabolic main cable and vertical hanger cables connecting ...

Simulating Wear in Disc Brakes - new

N. H. Elabbasi[1], M. J. Hancock[1], S. B. Brown[1]
[1]Veryst Engineering, LLC., Needham, MA, USA

Wear is a complex phenomenon relevant to many problems involving frictional contact, such as mechanical brakes, seals, metal forming, and orthopedic implants. The rate of wear depends on the properties of the contacting materials and operating conditions. One widely used model of wear is Archard’s law, which relates the rate of material removal due to wear to the contact pressure, sliding ...

Simulation of Thermal Elastohydrodynamic Lubricated (TEHL) Gear Contacts

T. Lohner [1], A. Ziegltrum [1], K. Stahl [1],
[1] Gear Research Centre (FZG), Technical University of Munich (TUM), Garching, Germany

Thermal elastohydrodynamic lubricated (TEHL) contacts occur very frequently in drive technology and thus in gear drives. In this presentation, the implementation of a finite element based TEHL simulation approach for gear contacts in COMSOL Multiphysics® software is shown. The physically based simulation approach used is different to most of the existing TEHL simulations and is required to ...

Study of Thermal Behavior of Thermoset Polymer Matrix Filled with Micro and Nanoparticles

B. Reine[1], J. Di-Tomaso[2], G. Dusserre[1], P. Olivier[1]
[1]Université de Toulouse, UPS, INSA, Mines Albi, ISAE, ICA, IUT, Dept. GMP, Toulouse Cedex, France
[2]RESCOLL - Société de Recherche, Pessac Cedex, France

This paper addresses the study of thermal behavior of thermoset polymer matrix filled with microparticles. A numerical model was developed with COMSOL Multiphysics to get a random spatial distribution of fillers in a representative volume element (RVE). This model was then compared to an analytical reference model (Hamilton model) and experimental results. This comparison highlights a good ...

Support-Q Optimisation of a Trapped Mode Beam Resonator - new

T. H. Hanley[1], H. T. D. Grigg[1], B. J. Gallacher[1]
[1]Newcastle University, Newcastle-Upon-Tyne, UK

Introducing a disorder into a finite periodic oscillatory system induces the presence of a 'trapped mode': a mode in which the displacement field is localised to the region of the disorder. A main inhibitor to MEMS resonators achieving a high quality (Q) factor is energy radiation through the support to the substrate. The trapped modes present a way to tune this to a minimal value. An initial ...