Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computational Simulation of Gold Core/Shell Nanostructures for Near-Field Transducers in Heat-Assisted Magnetic Recording - new

J. Bennington[1]
[1]Queen's University Belfast, Belfast, Northern Ireland, UK

A recurring problem, in heat assisted magnetic recording is the build-up of thermal energy in the near-field transducer leading to NFT deformation and the cessation of operation. A mechanism to dissipate this excess heat in the NFT without greatly effecting its’ plasmonic response is therefore required. The RF Module and COMSOL Multiphysics® software are used to investigate the plasmonic ...

DPF Regeneration using MW

N. Manivannan [1], N. Alozie [1], D. Brennan [1], M. Abbod [1], W. Balachandran [1]
[1]Brunel University, Kingston Road, Uxbridge, United Kingdom

A new microwave cavity for the regeneration of DPF regeneration was proposed and COMSOL Multiphysics® FEM model was used to investigate heating properties of the Silicon Carbide (SiC) based DPF. Electric field profile and thermal profile of the microwave cavity and DPF was established for various dimensions of microwave cavity for a given DPF size and the results were investigated. Microwave ...

Analysis of RF Characteristics of a Compound Semiconductor Device Integrated with a Wide-Band Antenna for THz Wireless Communications

A. Tashiro[1], M. Nakamura[1], M. Suhara[1]
[1]Tokyo Metropolitan University, Hachioji City, Tokyo, Japan

Use of the terahertz(THz) region, which is unexplored frequency band, is investigated and expected for the next-generation high-speed wireless communication. In this presentation, we propose a monolithic integrated device by using mesa-shaped compound semiconductor and a thin-metal broadband antenna which is capable in THz operation, and we analyze several characteristics of the device by using ...

Thermoelastic Model for Microwave Ablation of Concrete

B. Lepers[1], S. Soldatov[1]
[1]Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology, Karlsruhe, Germany

The use of high power microwave energy for ablation of contaminated concrete is a promising technique to speed up the dismantling of nuclear power plants. A coupled simulation using COMSOL Multiphysics® finite element software is performed by solving the electromagnetic wave equation at 2.45 GHz for a standard wave guide and a concrete block. The temperature field is obtained with the heat ...

Numerical Analysis on Plasmonic Nano-Cucumber Achieving Large EFs and Wide Tuneability of the Peak

A. Zare [1], E. Cutler [1], H. Cho [1],
[1] Center for Biomedical Engineering & Science, University of North Carolina - Charlotte, Charlotte, NC, USA

INTRODUCTION: Researchers in the biomedical field have recently become interested in the potential applications of plasomics. Surface plasmon resonance based on optical properties of metallic nanostructures can be used for detection of special biological targets. Gold nanostructures with different shapes and sizes have been designed to achieve high enhancement factor (EF), wide range of ...

Plasmonic Properties of Bimetal Nanoshell Cylinders and Spheres

K. Ehrhold[1], S. Christiansen[1,2], and U. Gösele[1]
[1]Max Planck Institute of Microstructure Physics, Halle, Germany,
[2]Institute of Photonic Technology, Jena, Germany

Plasmonics is a new branch of the fascinating field of photonics and develops concepts to quench light beyond the diffraction limit and enhance electromagnetic fields. These enhancements occur in metals as localized surface plasmon polaritons (LSP) a coupling of the surface density oscillations of the electron gas to the incident light. With threedimensional nano-structures of coinage metals ...

Topographic Effects on Radio Magnetotelluric Simulations on Levees: Numerical Modeling for Future Comparison With Fields Results

R. Duval[1], C. Fauchard[1], R. Antoine[1]
[1]ERA23-IFSTTAR, Laboratoire des Ponts et Chaussées de Rouen, CETE-Normandie Centre, France

We study the topography influence of levees on the electric resistivity signal obtained with the Radio-Magnetotelluric method. Field measurements have been modeled with COMSOL, using the AC/DC and RF Modules. A levee situated in Orléans along the Loire river (France) has been considered in order to design a model tacking account of the skin depth and the incident wavelength, keeping a constant ...

Universal Dielectric Response of Atmospheric Ice Using COMSOL Multiphysics®

U.N. Mughal[1], M.S. Virk[1], K. Zaman[1]
[1]Narvik University College, Narvik, Norway

Heterogeneous materials with different phases, are conductive and insulating (dielectric), and are physically present in different natural materials as e.g. atmospheric ice. Jonscher’s proposed ‘universal dielectric response’ is not sufficient for such materials, as it only reflects conductivity as a nonlinear function of frequency, whereas at lower temperatures dipolar vibrations are also very ...

Argon Plasma Simulations for Educational Purposes at Fontys University of Applied Physics

H. van Halewijn [1],
[1] Fontys University of Applied Physics, The Netherlands

At the Fontys University of Applied Physics (The Netherlands) a plasma etcher has been acquired for educational purposes. The machine operates at low power up to 30 Watt and is driven with a magnetic coil at 13.56 MHz. The use of COMSOL Multiphysics software will be discussed to simulate the temperature and mass fractions of the activated and ionized atoms in the gas. The simulations will be ...

Going beyond Axisymmetry: 2.5D Vector Electromagnetics

Y.A. Urzhumov[1][,][2], N.I. Landy[1][,][2], C. Ciraci[2], D.R. Smith[1][,][2]
[1]Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
[2]Center for Metamaterials and Integrated Plasmonics, Pratt School of Engineering, Duke University, Durham, NC, USA

Linear wave propagation through inhomogeneous structures of size R?? (Fig.1) is a computationally challenging problem, in particular when using finite element methods, due to the steep increase of the number of degrees of freedom as a function of R/?. Fortunately, when the geometry of the problem possesses symmetries, one may choose an appropriate basis in which the stiffness matrix of the ...