Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Investigation of Non-Newtonian Laminar Flow in a Curved Tube with Insert

A. Kadyyrov[1]
[1]Research Center for Power Engineering Problems, KSC, RAS, Russia

Non-Newtonian laminar flows in curved circular tubes with inserts are investigated by computer simulations. 0.65% solution of NaCMC is considered. Three-dimensional incompressible Navier-Stokes equations are solved using COMSOL Multiphysics. Placements of inserts inside the curved tubes and their effects on the hydrodynamics of the flow are studied. Computations are carried out with various ...

Modeling Low Frequency Axial Fluid Acoustic Modes in Continuous Loop Piping Systems

E. Gutierrez-Miravete[1], E.R. Marderness[2]
[1]Rensselaer Polytechnic Institute, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

Industrial fluid systems often involve continuous piping loops. These systems consist of varying lengths of pipes and hoses connecting multiple components together. Fluid resonances can detrimentally affect the operation of fluid systems and components. This work used COMSOL to investigate the frequency and mode shapes of axial fluid resonances within a system of piping and components that ...

Magnetotelluric Response Distortion Over Rugged Topography

D. Rizzello[1], P. Canepa[1], E. Armadillo[1]
[1]DISTAV - University of Genova, Genova, Italy

Topographic effects on magnetotelluric responses may be severe on rugged terrains. Finite elements simulation is a valuable tool to quantify this effect, due to its capability to match real morphologies. To do the estimate of the distortion, the AC/DC Module of COMSOL has been employed, using a model of homogeneous resistivity on which a DEM (Digital Elevation Model) profile of the Deep Freeze ...

Optimizing Fuel Cell Design with COMSOL Multiphysics

Chin-Hsien Cheng[1]
[1]Renewable Energy RD Center, Chung-Hsin Electric & Machinery, Taiwan

Proton exchange membrane fuel cells (PEMFCs) were investigated using COMSOL Multiphysics with the AC/DC Module and Chemical Engineering Module. Simulation may be used to increase the performance while decreasing the cost of the catalyst later (CL). Experimental validation of single and multi-layer CL was performed for varied PBI electrolyte content. The validated model was used to investigate ...

Modeling of a Biogas Steam Reforming Reactor for Solid Oxide Fuel Cell Systems

F. Cipitì[1]
[1]CNR-ITAE, Institute of Advanced Technologies for Energy, Messina, Italy

A biogas steam reforming reactor has been developed in order to be integrated into a proof-of-concept SOFC system, able to operate with biogas produced in an industrial waste water treatment unit. A mathematical model, aimed at describing the performance of the reactor, has been developed. The reactor is simplified and modeled as a non-isothermal plug flow reactor. The reactor is fed with a ...

Design of a MEMS Resonator for a Centre Frequency Greater than 26.35 MHz and Temperature Coefficient Frequency Less than 0.5 ppm

S.Manikandan[1], R.Radeep krishna[1]
[1]Kalasalingam University, Department of ECE, Srivilliputtur ,Krishnan koil, Tamil Nadu, India

The variability of the design parameters caused by material properties like thermal conductivity is the major challenge in Micro Electromechanical System (MEMS). In resonator design the basic problem is that the frequency changes with temperature variation and quantitative explanation with respect to this varies. The change can be attributed to the stability in terms of frequency drift in parts ...

Chromatographic Separation of Tröger’s Base in a Batch Column

A. Fayolas [1], M.G. Sanku[1], M. Pascoa[1], M. Xynou[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

The objective of the study is to investigate the chiral separation of Tröger’s base enantiomers using batch chromatography. Because of its resolution, chromatography is often the preferred method for chiral separations. The separation of Tröger’s base is resolved by using the COMSOL Multiphysics® software. It is modeled by one dimension geometry, having the length of the column set and computed ...

Integrated Solar Thermal Collector with Heat Storage

A.R. Sánchez-Guitard[1], E. Ruiz-Reina[1]
[1]University of Málaga, Málaga, Spain

In this work, we study the design of a new integrated system for Solar Water Heating that combines the solar thermal energy collection (primary circuit) with the heat storage (secondary circuit) into the same device. We have performed different finite element method simulations using COMSOL Multiphysics®, for solving the equations of heat transfer (conduction and convection) and those of fluid ...

Modelling of a Wool Hydrolysis Reactor - new

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

The Life+ GreenWoolF project is aimed at demonstrating that green hydrolysis with superheated water is an effective way to convert wool wastes into organic nitrogen fertilizers. The core of the process is represented by the reaction tank (Figure 1) in which the hydrolyses reaction takes place. The temperature of the material during the reaction is one of the most influencing parameter and has to ...

Numerical Modelling of the Plasma Discharge During Electron Beam Welding (EBW) - new

D. Trushnikov[1], G. Mladenov[2]
[1]Perm National Research Polytechnic University, Perm, Russia
[2]Institute of Electronics of Bulgarian Academy of Sciences, Sofia, Bulgaria

This work describes a model for plasma formation in the keyhole and above the EBW zone. The parameters of the plasma are closely connected to the characteristics of the thermal action of the electron beam on the welded metal, which allows operational control and study of EBW. The ionization intensity of the vapour due to beam electrons and high-energy secondary and backscattered electrons is ...