Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Flow and Mixing in the Liquid between Bubbles

B. Finlayson[1]
[1]Department of Chemical Engineering, University of Washington, Seattle, Washington, USA

Mixing is characterized in liquids moving between bubbles when the bubbles are moving down a microfluidic channel. The shape is assumed based on fluid mechanical arguments and experimental observations, and the mixing is characterized for a variety of situations in two and three-dimensions. In COMSOL Multiphysics, an integration coupling variable was used by solving the problem in two dimensions ...

COMSOL Multiphysics – Fuel Cell and LED applications

C-H. Cheng
National Central University, Chungli, Taiwan

Dr. Chin-Hsien Cheng received his PhD. Degree in National Tsing-Hua University, Taiwan in 2007. He joined Institute for Integrated Energy Systems, University of Victoria, Canada as a post-doctoral fellow until Aug. 2009. Currently, he is a research associate and lab manager of the Modeling and Simulation Lab. in the Fuel Cell Center, Yuan-Ze University. Dr. Cheng has been work in the field of ...

Blistering of Industrial Floors on Concrete Substrate: The Role of Air Overpressure

P. Devillers[1], S.V. Aher[2], G. Fau[3], B. Tranain[3], and C. Buisson[1]
[1]Centre des Matériaux de Grande Diffusion, Ecole des Mines d’Alès, France
[2]Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
[3]Centre Scientifique et Technique du Bâtiment, Champs sur Marne, France

A three dimensional COMSOL Multiphysics, transient analysis, diffusion model has been adopted to model the transfers of water in the industrial concrete floors. To take into account the different initial saturation levels at the different levels of the slab, the model is divided into three subdomains. The rise of the waterfront is also simulated and the air overpressure thereby developed at the ...

Modeling Bacterial Clearance Using Stochastic-Differential Equations

A. Jeremic, and A. Atalla
McMaster University, Hamilton, ON, Canada

In this paper, we develop a mathematical model to simulate the movement of bacteria into and within a capillary segment. Also, we model the transportation through capillary walls by means of anisotropic diffusivity that depends on the pressure difference across the capillary walls. By solving the model using COMSOL, it was possible to predict the concentration of bacteria at points within the ...

Upgrading the HFIR Thermal-Hydraulic Legacy Code Using COMSOL

I.T. Bodey[1], R.V. Arimilli[1], and J.D. Freels [2]
[1]The University of Tennessee, Knoxville, TN, USA,
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

Modernization of the High Flux Isotope Reactor (HFIR) thermal-hydraulic (TH) design and safety analysis capability is an important step in preparation for the conversion of the HFIR core from a high enriched Uranium (HEU) fuel to a low enriched Uranium (LEU) fuel. Currently, an important part of the HFIR TH analysis is based on the legacy Steady State Heat Transfer Code (SSHTC). The SSHTC is a ...

Wavebased Micromotor for Plane Motions (3-DoF)

G. Jehle, D. Kern, and W. Seemann
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

This paper proposes the design of a 3-Degree of Freedom(DoF) motor based on surface acoustic waves in elastic solids. The rotor is propelled by wave fields, for linear and rotational motion respectively, in the stator, that can be steered by the driving signal of the piezoelectric actuators, which are placed on an elastic plate. The next considerations concern the feasibility of the proposed ...

Influence of pH and Carbonate Buffering on the Performance of a Lactate Microbial Fuel Cell

A.Torrents, N. Godino, F.J. del Campo, F.X. Muñoz, and J. Mas
Universitat Autònoma de Barcelona, Spain

Microbia Fuel Cells (MFC’s) are complex environments where electrochemical, physical and biological aspects must be considered together. In this work we present a 1D model partially describing a Shewanella oneidensis MFC that degrade sodium lactate [lactate -> Acetate + CO2 + 2H+ + 2e-]. The model, simulated using COMSOL, focuses on pH implications of the MFC operation. Release of protons ...

Model of an Interdigitated Microsensor to Detect and Quantify Cells Flowing in a Test Chamber

E. Bianchi[1], F. Boschetti[1], G. Dubini[1], and C. Guiducci[2]
[1]Politecnico di Milano, LABS, Laboratory of Biological Structure Mechanics, Structural Engineering Department, MI, Italy
[2]CLSE - Swiss Up Chair -Laboratory of Life Science Electronics, EPFL, Losanna, Swissland

Microfabricated planar interdigitated electrodes can detect and analyze cells or particles giving an impedance-based characterization. This method presents several advantages: real-time detection, label-free analysis, non-invasive sensing, easiness of integration and high-throughput screening. A numerical model of an interdigitated planar micro sensor was realized in order to optimize and ...

Finite Element Analysis of Equine Tooth Movement Under Masticatory Loading

M. Gardemin[1], M. Lüpke[1], V. Cordes[2], and C. Staszyk[2]
[1]Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Hannover, Germany
[2]Institute of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany

Like humans, horses can develop a variety of dental problems. Different equine diseases occur in different areas of the equine cheek tooth or its surrounding tissues. With a realistic simulation of a chewing cycle it can be possible to link mechanical phenomena such as high stress in distinct areas to commonly occurring diseases. According to different angles of the acting chewing force, ...

Homogeneous Heating of Milk

A. Stahel, and A. Reichmuth
Berner Fachhochschule
Biel, Switzerland

When milk is taken out of a refrigerator it has to be heated up to 37°C. The standard solution is to put the bottle in a bath of warm water and wait. The goal is quickly to achive a uniform temperature of 37°C, without ever exceeding 40°C. Using COMSOL Multiphysics and a measurement setup for calibration, we show that this can be improfed by using variable heating. By choosing heating ...

Quick Search

3191 - 3200 of 3645 First | < Previous | Next > | Last