Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Effects of the Film Thickness on the Transient Conjugate Opticalthermal Fields in Thin Films Irradiated by Moving Sources in Back and Front Treatments

N. Bianco[1], O. Manca[2], S.Nardini[2], and D. Ricci[2]

[1]DETEC, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]DIAM, Seconda Università degli Studi di Napoli, Aversa, CE, Italy

A two dimensional transient analysis of the conjugate optical-thermal fields induced in a multilayer thin film structure by a moving Gaussian laser source is carried out numerically in order to compare back and front laser treatment processes. Thermal and optical nonlinearity is induced during transient heating, since the response of weakly absorbing thin films depends on temperature. The heat ...

COMSOL Multiphysics® as a Tool for Reducing Animals in Biomedical Research: An Application in Dermatology

F. Rossi[1] and R. Pini[1]
[1]Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Firenze, Italy

In biomedical research the use of animal models gives rise to several ethical problems. COMSOL Multiphysics® may be used as a non-animal technique, very useful in overcoming all these concerns. In this presentation a particular application in dermatology is shown. Bioheat equation mode and diffusion approximation were used to design a theoretical model of blue LED light interaction with an ...

Analog to Digital Microfluidic Converter

R. Dufour [1], C. Wu[1], F. Bendriaa[1], V. Thomy[1], and V. Senez[1]
[1]BioMEMS Group, IEMN, University of Lille Nord de France, Villeneuve d’Ascq, France

This paper presents an Analog to Digital Microfluidic Converter (ADMC) using passive valves and enabling the conversion of a continuous liquid flow into droplets for Electro-Wetting On Dielectric (EWOD) actuation. Valves calibration, geometry characteristics and losses reduction have been optimized using microfluidic application mode of COMSOL Multiphysics®.

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes

D. Song[1], R. Gupta[1], and Chhabra[2]

[1]West Virginia University, Morgantown, West Virginia, USA
[2]Indian Institute of Technology, Kanpur, India

Heat transfer from a sphere having a uniform temperature and falling axially in a cylindrical tube filled with an incompressible power-law liquid is numerically investigated. The governing equations for simultaneous flow around a confined sphere and heat transfer to power-law fluids were solved numerically using COMSOL Multiphysics. It was found that the wall effects on the mean Nusselt number ...

Model for Steam Reforming of Ethanol Using a Catalytic Wall Reactor

J. Torres[1], and D. Montane[2]
[1]Centre Huile Lourde Ouvert et Experimental (CHLOE), University of Pau, France
[2]Department of Chemical Engineering, Virgili University, Tarragona, Spain

Steam Reforming of Ethanol using a Catalytic Wall Reactor (CWR) was successfully studied using COMSOL Multiphysics. A mathematical model was used to describe the reactor performance in terms of the main variables and dimensionless groups. Simulations showed that at specified conditions CWR maintains a thermal performance adequate for evaluating catalysts under a uniform temperature profile. CWR ...

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are performed by a finite-element simulation method, developed through the software package COMSOL Multiphysics 3.4.

A Mean Field Approach to Many-particles Effects in Dielectrophoresis

O. Nicotra, and A. La Magna
CNR-IMM Sezione di Catania, Catania, Italy

One of the major applications for dielectrophoresis is the selective trapping and fractionation in lab-on-a-chip devices. Nevertheless, many-particle effects due to high concentrations of biological material around electrodes can cause a rapid decrease of trapping efficiency in dielectrophoretic devices. In this contribution we present a new approach based on a drift-diffusion dynamics to study ...

A Numerical Investigation on Active Chilled Beams for Indoor Air Conditioning

G. Cammarata, and G. Petrone
Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

In this study fluid-dynamical and thermal performance of active chilled beams is investigated by 2D and 3D modelling in COMSOL Multiphysics. Three different typologies of those air conditioning systems are considered. Results, obtained for typical range of variation of operational conditions, are principally produced as temperature and velocity distributions. Special attention is paid to the ...

Magnetic Particle Buildup Growth on Single Wire in High Gradient Magnetic Separation  

F. Chen
Department of Chemical Engineering, M.I.T., Cambridge, MA, USA

Magnetic fluids containing nano or submicron magnetic particles and their application in food, biological and pharmaceutical systems have recently attracted increasing attention. Magnetic particles can be collected efficiently in magnetizable matrices (e.g. iron wires) in high gradient magnetic separation (HGMS) process. In this work, the dynamic buildup growth process is treated as a moving ...

Three-Dimensional Simulation of Signal Generation in Wide-Bandgap Semiconductor Radiation Detectors

J. E. Toney[1]
[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of Comsol Multiphysics with Matlab to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and effectively compensate for the poor hole transport of most compound semiconductor materials.

2711 - 2720 of 3390 First | < Previous | Next > | Last