Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulating an Adaptive, Liquid-Filled Membrane Lens with COMSOL Multiphysics® Software

V. S. Negi[1], H. Garg[1], B. Singh [2],
[1] Central Scientific Instruments Organisation, Chandigarh, India
[2] Chandigarh College of Engineering and Technology, Chandigarh, India

Adaptive optics control using liquid filled membrane lens is based on the principle of deflection of polymeric membrane. Controlled deflection in membrane leads to controlled focal length. This enhances the focus tuning ability of the system at the same time make optical system compact and economical. The adjustment of fluid pressure helps to toggle between different field of view at the same ...

基于外部材料接口的循环塑性本构模型二次开发

蒋帆 [1],
[1] 华中科技大学电气与电子工程学院,武汉,中国

目前的商用有限元软件中,描述导体材料多采用为双线性或者多线性硬化的本构模型,而如纯铜、铜铌合金等材料均在疲劳加载过程中展现出了明显的棘轮效应等循环变形特征。线性硬化模型最大的一个缺陷是不能反映材料的循环硬化/软化、棘轮行为等循环变形特征;相反,非线性硬化模型能对导体材料的循环变形特征行为更为合理的模拟。另外,商用软件存在两方面不可避免的问题,一是非线性随动硬化模型发展迅速,商用软件内嵌的模型不能及时更新至目前更为合理的循环塑性模型,二是不能通过定义损伤变量来对材料损伤造成的材料承载能力的下降进行描述。解决以上问题,可利用商业软件提供的材料二次开发接口,通过编写二次开发子程序来实现用户所需的本构模型或功能。 在金属材料的循环塑性本构模型中,以 Armstrong-Frederick 随动硬化模型为基础进行修改和改进的非线性随动硬化模型得到了更为广泛的发展和应用,具有代表性的有 ...

Model Based Stimulus Experiments to Improve Biological Wastewater Treatment Performance

N. Do [1], M. Stich [1],
[1] Non-linearity and Complexity Research Group, System Analytics Research Institute, School of Engineering and Applied Science, Aston University, Birmingham, United Kingdom

The municipal wastewater treatment in a sustainable context requires a smart technology in which an optimal combination of the ecological status and energy demand can be achieved. The integration of electron conductive materials into a traditionally constructed wetland (CW) has been demonstrated as an emerging strategy for wastewater treatment [1, 2]. By exploiting the electron transfer ...

Meshing Challenges in Simulating the Induced Currents in Vacuum Phototriode

S. Zahid [1], P. R. Hobson [1],
[1] Brunel University London, London, United Kingdom

Vacuum phototriodes (VPT) have been used as photodetectors for many years in particle physics experiments. For example, they were used in the OPAL experiment at LEP and are currently used in the endcap Electromagnetic Calorimeter of the CMS experiment, at CERN’s Large Hadron Collider. Existing VPTs are fast, low-gain devices that are able to operate in strong magnetic fields at angles up to ...

Inverse Analysis of Soil Parameters Based on Deformation of a Bank Protection Structure

Y. Xing [1], R. Hu [2], Q. Liu [1],
[1] Geoscience Centre, University of Goettingen, Goettingen, Germany
[2] School of Earth Science and Engineering, Hohai University, Nanjing, China

Deformation prediction is an important part of the structure stability analysis. However, the deformation of bank protection structure which is affected by many factors, such as structural stiffness, earth pressure and hydrostatic pressure. It contains a complex mechanical process, which is a grey, fuzzy, stochastic and nonlinear engineering problem[1]. Neural network method as one of nonlinear ...

Modeling of Electro-Thermal Microbolometer for Thermal Imaging

A. Nowicki [1], A. Bennecer [1],
[1] Mechanical Engineering, University of Northampton & Gdańsk University of Technology, Gdańsk, Poland
[2] Engineering, University of Northampton, Northampton, United Kingdom

A Microbolometer is a specific type of uncooled infrared radiation detector used in thermal cameras, which converts the incoming energy into a proportionate electrical signal, which is then amplified, processed and displayed, typically on the thermal camera’s LCD viewer. The main principle of operation of a microbolometer is a thermally sensitive layer which is exposed to incident ...

COMSOL Modeling of a Submarine Geothermal Chimney

M. Suárez [1], and F. Samaniego [2]
[1]Faculty of Sciences, Michoacán University (UMSNH), Morelia, Michoacan, Mexico
[2]Faculty of Engineering Postgrade Studies Division, National University of Mexico (UNAM), Mexico City, Mexico

New geothermal energy sources hold promise for the future. Deep submarine geothermal energy related to hydrothermal vents is emerging in many places along the oceanic spreading centers. Shallow submarine geothermal systems are found near to continental platforms. We present the initial development of mathematical models to simulate the energy transport in submarine systems. A model for the ...

Simulation of a Diesel Oxidation Catalyst Used in a NOx Storage and Reduction system for Heavy Duty Trucks

C. Odenbrand, and E. Senar Serra
Department of Chemical Engineering, Lund University, Lund, Sweden

This work concerns the performance of an oxidation catalyst used in a NOx storage and reduction system. The oxidation of NO is the main objective of this study, where the presence of CO and propene has also been taken into account. Experimental data has been determined on a monolithic oxidation catalyst mounted after a heavy duty diesel engine in a rig. The conversion of hydrocarbons is ...

Inductance of Magnetic Plated Wires as a Function of Frequency and Plating Thickness

T. Graf[1], O. Schälli[1], A. Furrer[1], and P. Marty[1]

[1]Technik und Architektur, Hochschule Luzern, Horw, Switzerland

This paper analyzes the magnetic behavior of electroplated wires. For this purpose the resistance and inductance of single turn loops and coils have been simulated and measured. The measurement is delicate due to the influence of a stray capacitance. We show that the quality factor of magnetic plated loops and coils can be tuned easily by the plating thickness. In addition the quality factor of ...

Modeling Heat and Mass Transfer in Bread During Baking

V. Nicolas[1,2], J.P. Ploteau[1], P. Salagnac[2], P. Glouannec[1], V. Jury[3], and L. Boillereaux[3]
[1]Laboratoire d’Ingénierie des MATériaux de Bretagne – Equipe Thermique et Energétique, Université Européenne de Bretagne, Lorient Cedex, France
[2]Laboratoire d’Etudes des Phénomènes de Transfert et de l’Instantanéité : Agro-industrie et Bâtiment, Université de La Rochelle, La Rochelle Cedex, France
[3]Laboratoire de Génie des Procédés, Environnement, Agroalimentaire, ENITIAA, France

In this paper, we present a first model carried out with COMSOL Multiphysics to model bread baking, considering heat and mass transfer coupled with the phenomenon of swelling. This model predicts the pressures, temperatures and water contents evolutions in the dough for different energy requests. First results obtained are analyzed according to various physical parameters in order to better ...