Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Reliability Enhancement of Bio MEMS based Cantilever Array Sensors for Antigen Detection System using Heterogeneous Modular Redundancy

L. S. Sundharam[1]
[1]Kumaraguru college of Technology, Coimbatore, Tamil nadu, India

The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which are heterogeneous not only in their respective structures and behaviors but also in their forms. The possible ...

Numerical Simulations of Radionuclide Transport through Clay and Confining Units in a Geological Repository using COMSOL

J. Hansmann[1], M. L. Sentis[1], B. J. Graupner[1], A.-K. Leuz[1], C. Belardinelli[2]
[1]Swiss Federal Nuclear Safety Inspectorate (ENSI), Brugg, Switzerland
[2]Kantonsschule Solothurn, Solothurn, Switzerland

Introduction: The sectoral plan that defines the procedure and criteria of site selection for deep geological repositories for all categories of waste (high-level and low- and intermediate-level waste) in Switzerland started in 2008 and will last for about ten years. ENSI (Swiss Nuclear Safety Inspectorate) is in charge of reviewing the proposals and safety assessments for geological ...

Numerical Simulation of Flow Electrolysers: Effect of Various Geometric Parameters

P. Shukla[1], K. K. Singh[1], P. K. Gupta [1], S. K. Ghosh[1]
[1]Bhabha Atomic Research Centre, Trombay, Mumbai, India

Flow electrolysers find several applications in industry. They are used for production of metals and synthesis of chemicals, gases. Cleaning and preservation of old artifacts, electrolytic refining of metals, electrolytic winning of metals, alkaline water electrolysis, anodization, electrometallurgy, electroplating, electrolytic etching of metal surfaces are other industrial applications of flow ...

Electro Thermal Performance Prediction of Radio Frequency Ablation System for Efficient Cancer Treatment

C. Thiagarajan[1], V. Gnanasekar[2]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka, India.
[2]Perfint Healthcare Pvt. Ltd, T.Nagar, Chennai, India.

Cancer causes significant human deaths. Radiofrequency ablation is an encouraging procedure for cancer treatment. The objective is to demonstrate the multiphysics simulation methodology. This paper summarizes the problem , governing equations, methodology, assumptions, simulation results and discussion related to the thermal performance prediction of radio frequency ablation on a homogeneous ...

Effect of Fluid Conditions on Air-Liquid Interface in Hydrophobic Micro Textured Surface

S. Takahashi[1], S. Ogata[1]
[1]Tokyo Metropolitan University Hachioji City, Tokyo, Japan

We studied the influence of a number of gas-liquid interface on the drag reduction effect by numeric simulation. Level set method was used for an analysis of gas-liquid interface. The analytic model is rectangular channel of height h = 5 micrometer and width w = 20 micrometer with two hydrophobic microstructures in bottom of channel. In this channel, we found that the liquid penetrates in the ...

Development and Optimization of a Microfluidic Device for Magnetic Field Induced Cell Separation

L. Helmich[1], A. Hütten[1]
[1]Bielefeld University, Bielefeld, Germany

Besides conventional laboratory analysis methods, so called micro-total-analysis devices (µTAS) have gained great interest during the last decades. In this work we demonstrate a mechanism for the separation and selection of medical samples that can be applied within these µTAS devices. Due to magnetic beads, which are bound to the cell surface, these biological samples become sensitive to ...

Finite Element Modeling of Five Phase Brushless Motor for High Power Density Application

[1]M A College of Engineering, Electrical and Electronics, Kothamangalam, Ernakulam,Kerala, India
[2]ISRO, Electrical and Electronics, Trivandrum,Kerala, India

The demand for high reliability motor drives increases every day, especially in aircraft where traditional, nonelectric systems (hydraulic, pneumatic) are being replaced by electrical actuators following the More Electric Aircraft (MEA) trend. Its pursuing involves the adoption of protective design concepts such as fault-tolerant or redundant approaches, aiming to minimize mission failure ...

Joule Heating in Electroosmotically Driven Circular Constriction Microchannel

U. Sanjay [1], P. Sarith[2], R. Ajith Kumar[1]
[1]Amrita Vishwa Vidhyapeetham, Kollam, Kerala, India.
[2]National institute of Technology, Calicut, Kerala, India.

Liquid transport in lab-on-a-chip (LOC) devices occurs through a microchannel that uses an electroosmotic flow actuation mechanism. This method has a plug-like velocity profile, which is ideal in species transport and in wall-bounded reactions. Under substantial joule heating, it is not possible to maintain a plug-like velocity distribution. My work investigates the effects of joule heating ...

An Innovative Reactive Transport Modeling Approach for the Chemical Evolution of a HLW Cell in the Callovo-Oxfordian Formation

J. Molinero[1], D. García[1], M. Grivé[1], A. Nardi[1]
[1]Amphos 21 Consulting, Barcelona, Spain

Andra (The French National Radioactive Waste Management Agency) envisages the safe disposal of High-Level Waste (HLW) and Intermediate-Level Long-Lived Waste (IL-LLW) in deep geological storage using a multi-barrier system. To ensure the containment of radioactivity, the principle of storage is based on a clay formation with low permeability, homogeneity and continuity (i.e Callovo-Oxfordian ...

Heat Generation from H₂/D₂ Pressurization of Nanoparticles: Simulation of the Experiments on COMSOL Multiphysics®

A. Osouf[1], G. Miley[2], B. Stunkard[3], T. Patel[3], E. Ziehm[2], K. Kyu-Jung[3], A. Krishnamurthy[1]
[1]Department of Aerospace Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, USA
[2]Department of Nuclear, Plasma & Radiological Engineering, University of Illinois at Urbana - Champaign, Urbana, IL, USA
[3]University of Illinois at Urbana - Champaign, Urbana, IL, USA

A COMSOL Multiphysics® model of our apparatus has been created in order to simulate the pressurizations of our nanoparticles by Deuterium. Using reference measurements during a cooling process, we calibrated the model so that its thermal aspects reflect the ones of our experimental set up. To reproduce the pressurizations, the following variables are parameters : the location of the heat ...