Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling the Vanadium Oxygen Fuel Cell

F.T. Wandschneider[1], M. Küttinger[1], P. Fischer[1], K. Pinkwart[1], J. Tübke[1], H. Nirschl[2]
[1]Fraunhofer-Institute for Chemical Technology, Pfinztal, Germany
[2]Karlsruhe Institute for Technology, Karlsruhe, Germany

A two-dimensional stationary model of a vanadium oxygen fuel cell is developed in COMSOL Multiphysics®. This energy storage device combines a vanadium flow battery anode and an oxygen fuel cell cathode. The oxygen reduction reaction generates additional water, leading to a degradation of the catalyst performance over time. A logistic function is introduced to the Butler-Volmer equation in order ...

Development of a COMSOL Application for the Efficient Evaluation of an Engineered Barrier System

D. Sampietro [1], E. Abarca [1], H. von Schenck [2], J. Molinero [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain
[2] Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden

Radioactive waste repositories include barriers that work to contain the waste, thereby protecting human health and the environment. In deep geological disposal systems, barriers include the natural geological barrier and the engineered barrier system (EBS). The ability of the EBS to limit groundwater flow is important and optimized design solutions are often sought by means of numerical ...

Simulation of Daisy Chain Flip-Chip Interconnections

G.S. Durante[1] and M. Fretz[1]

[1]CSEM Zentralschweiz, Alpnach Dorf, Switzerland

Flip-chip interconnection technologies have been tested through the use of a test chip with embedded single-bump daisy chains. The Flip-Chip technologies are selected among Au bump Thermocompression (TC) with and without Nonconductive Adhesives (NCA) underfiller, anisotropic conductive adhesive (ACA) bonding, and AuSn20 eutectic solder. The single bumps were then measured with a high precision ...

Modeling of Ferrofluid Passive Cooling System

M. Yang[1,2], R. O'Handley[2], and Z. Fang[2,3]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA
[2]Ferro Solutions, Woburn, MA, USA
[3]Pennsylvania State University, University Park, PA, USA

A ferrofluid contains nanoscale ferromagnetic particles suspended in a carrier liquid. It is used in some high-power acoustic speakers to cool the drive coil. The ferromagnetic particles far from the heat source are attracted by the drive coil’s magnetic field. As the fluid approaches the heat source, its temperature rises, causing the nanoparticles to become paramagnetic. Cooler magnetic fluid ...

Multiphysics Modelling of Sound Absorption in Rigid Porous Media Based on Periodic Representations of Their Microstructural Geometry

T.G. Zielinski[1]
[1]Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Sound absorption in porous materials with rigid frame and open porosity can be very effectively estimated by applying the Johnson-Allard model in order to substitute a porous medium with an equivalent effective fluid and then utilise the Helmholtz equation for time-harmonic acoustics. The model uses several parameters which characterize the micro-geometry of porous material from the macroscopic ...

Use of FEM in the Design of an HTS Insert Coil for a High Field NMR Magnet - new

E. Bosque[1]
[1]Applied Superconductivity Center, National High Magnetic Field Laboratory, Tallahassee, FL, USA

High temperature superconductors (HTS) allow larger current densities through coil wound electromagnets, which produce higher magnetic fields. A high field HTS insert demonstration magnet is being built with high field homogeneity (~1 ppm) for application in nuclear magnetic resonance (NMR). The HTS NMR system is inserted into the bore of an existing high field magnet. A compensating Helmholtz ...

Application of COMSOL Multiphysics® Pipe Flow Module to Develop a High Flux Isotope Reactor (HFIR) System Loop Model

P. K. Jain[1], D. Wang[1], J. D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA

Oak Ridge National Laboratory’s High Flux Isotope Reactor (HFIR) is the highest flux reactor-based source of neutrons for research in the United States. Thermal and cold neutrons produced by HFIR are used to study physics, chemistry, material science, engineering, and biology. Currently, RELAP5 code is the primary transient safety analysis tool used to perform thermal-hydraulic system safety ...

Finite Element Analysis of Transient Ballistic-Diffusive Heat Transfer in Two-Dimensional Structures - new

S. Hamian[1], T. Yamada[2], M. Faghri[3], K. Park[1]
[1]University of Utah, Salt Lake City, UT, USA
[2]Lund University, Lund, Sweden
[3]University of Rhode Island, Kingston, RI, USA

For the last two centuries, the conventional Fourier heat conduction equation has been used for modeling a diffusive nature of macroscale heat conduction by considering the energy conservation and Fourier's linear approximation of heat flux. However, it cannot accurately predict heat transport when the length scale is comparable to or smaller than the mean free path of thermal energy carriers or ...

Rheological Behaviour of Single–Phase Non-Newtonian Polymer Solution in Complex Pore Geometry: A Simulation Approach

P. Idahosa[1], G. Oluyemi[2], R. Prabhu[2], B. Oyeneyin[2]
[1]IDEAS Research Institute/School of Engineering, Robert Gordon University, Aberdeen, United Kingdom.
[2]School of Engineering, Robert Gordon University, Aberdeen, United Kingdom.

One of the most important criteria for evaluating chemical enhanced oil recovery (EOR) processes that use polymers is its rheological behaviour which in turn account for other physical effects of adsorption and resistance factors during polymer-rock interactions. However, complete knowledge of behaviour of polymer solution in porous media has not yet been fully gained. A computational fluid ...

Heat-Accumulation Stoves: Numerical Simulations of Two Twisted Conduit Configurations

D. Rossi[1], P. Scotton[2], M. Barberi[3]
[1]Università degli Studi di Padova, Dipartimento di Geoscienze, Padova, PD, Italy
[2]Padova, Dipartimento di Geoscienze, Padova, PD, Italy
[3]Barberi Stufe LTD, Trento, TN, Italy

An important part of the society considers an increased share of renewable energies as an integral part of a strategy towards a sustainable future. As far as heat supply is concerned, this can be achieved using solar thermal collectors, borehole heat exchangers or trough the combustion of biomass. This article shows two applications of two configurations of twisted conduit inside the external ...