Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Optimization of Heating for High-Speed Rotating Cup by Means of Multiphysics Modeling and its Experimental Verification - new

K. Kyrgyzbaev[1], M. Willert-Porada[1], M. Terock[1]
[1]University of Bayreuth, Chair of Materials Processing, Bayreuth, Germany

The physics of rotating cups and disks is an important research subject in many areas of engineering. The rotating cup/disk has been employed in many industrial applications such as spin-coating of phosphor on television screens or photoresist films on silicon wafer, concentrating solutions by evaporation, centrifugal atomization of metal melts, and glass flakes production. In this work the ...

Ferromagnetic Materials for MEMS- and NEMS-Devices

A. Weddemann, J. Jadidian, S. Khushrushahi, Y. Kim, and M. Zahn
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge MA

The modeling of ferromagnetic materials is a challenging task of high industrial and academic impact. Thin film and granular systems form the basis of novel spintronic devices such as modern hard drives with a high data area storage density. In order to push the current limits even further and to design more efficient devices, a strong understanding of the governing dynamics is required. We ...

Hydro-Mechanical Modelling of a Shaft Seal in a Deep Geological Repository

D. Priyanto
Atomic Energy of Canada Limited, Pinawa, MB, Canada

The hydro-mechanical (HM) numerical simulation of a shaft seal installed at a fracture zone in a hypothetical host rock using COMSOL is presented. Two different stages are considered in the numerical modelling. Stage 1 simulates the groundwater flow into an open shaft. Stage 2 simulates the groundwater flow after installation of shaft sealing-components. The shaft sealing components include: ...

Heat-Accumulation Stoves: Numerical Simulations of Two Twisted Conduit Configurations

D. Rossi[1], P. Scotton[2], M. Barberi[3]
[1]Università degli Studi di Padova, Dipartimento di Geoscienze, Padova, PD, Italy
[2]Padova, Dipartimento di Geoscienze, Padova, PD, Italy
[3]Barberi Stufe LTD, Trento, TN, Italy

An important part of the society considers an increased share of renewable energies as an integral part of a strategy towards a sustainable future. As far as heat supply is concerned, this can be achieved using solar thermal collectors, borehole heat exchangers or trough the combustion of biomass. This article shows two applications of two configurations of twisted conduit inside the external ...

Influence of Electrode Kinetics on Lithium-ion Battery Characteristics

H. Machrafi[1,2], S. Cavadias[2]
[1]University of Liège, Thermodynamics of Irreversible Phenomena, Liège, Belgium
[2]University Pierre et Marie Curie, Laboratoire des Procédés Plasma et Traitement de Surface, Paris, France

The purpose of this work is to show whether an important difference in Lithium solid concentration and electrolyte concentration can be observed in a Lithium-ion battery model, when considering either the Butler-Volmer kinetics or the Tafel kinetics for describing the electrode kinetics (including a boundary layer between the electrolyte and the electrode particles). During discharge, the lithium ...

Extraction of Thermal Characteristics of Surrounding Geological Layers of a Geothermal Heat Exchanger by COMSOL Multiphysics® Simulations - new

N. Aranzabal[1], J. Martos[1], J. Soret[1], J. Torres[1], R. García-Olcina[1], Á. Montero[2]
[1]Technical School of Engineering, University of Valencia, Valencia, Spain
[2]Department of Applied Physics, Politechnical University of Valencia, Valencia, Spain

It has been demonstrated that is possible obtain the thermal parameters of geological layers of a BHE (Borehole Heat Exchanger) by fitting temperature evolution in an observer pipe inserted into borehole.

Support-Q Optimisation of a Trapped Mode Beam Resonator - new

T. H. Hanley[1], H. T. D. Grigg[1], B. J. Gallacher[1]
[1]Newcastle University, Newcastle-Upon-Tyne, UK

Introducing a disorder into a finite periodic oscillatory system induces the presence of a 'trapped mode': a mode in which the displacement field is localised to the region of the disorder. A main inhibitor to MEMS resonators achieving a high quality (Q) factor is energy radiation through the support to the substrate. The trapped modes present a way to tune this to a minimal value. An initial ...

Modelling of Micro/Macro Densification Phenomena of Cu Powder during Capacitor Discharge Sintering

G. Maizza[1] and A. Tassinari[1]

[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

Capacitor Discharge Sintering (CDS) is an ultrafast Electric Current Assisted Sintering method (u-ECAS) suited for electrically conductive powders. It is characterized by relatively short processing times (milliseconds range) and much lower sintering temperatures than the melting point of the powders. However, the CDS basic phenomena are not fully understood yet neither at the macroscale nor at ...

Gate Control of Single-Electron Spins in GaAs/AlGaAs Semiconductor Quantum Dot

S. Prabhakar and J. Raynolds
College of NanoScale Science and Engineering, University at Albany, Albany, NY, USA

Non-charge-based logic is the notion that an electron can be trapped and its spin manipulated through application of gate voltages. Numerical simulations of Spin Single Electron Transistors (SSET) at University at Albany, aimed at practical development of post-CMOS concepts and devices is presented. We use COMSOL based multiphysics finite element simulation strategy to solve the ...

Laminar Fluid Flow and Heat Transfer Studies of an Electrical Conducting Fluid Subject to Combined Electric and Magnetic Fields

E. Gutierrez-Miravete[1], T. DePuy[2], and X. Xie[2]
[1]Rensselaer at Hartford, Hartford, CT
[2]Pratt & Whitney, East Hartford, CT

The flow of electrically conducting fluids such as liquid metals is significantly affected by applied electric and magnetic fields. The effect has important industrial applications in metallurgy, nuclear technology and other fields. This paper described results of a series of studies designed to investigate the capabilities of COMSOL Multiphysics to accurately simulate the steady laminar flow ...

Quick Search