Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Equation-Based Modeling: Simulation of a Flow with Concentrated Vorticity in an Unbounded Domain

J. M. Russell [1],
[1] Florida Institute of Technology, Melbourne, FL, USA

The velocity field of a fluid flow in an unbounded domain, R, in which the spin of fluid elements is nonzero only within a bounded subdomain, Ri---namely, the interior of a sphere of radius, a---is simulated by equation-based modeling. A change of independent variable motivated by Kelvin Inversion maps the region exterior to Ri, hereinafter denoted Re, to a proxy domain, Q, in the form of a ...

Hydrophone Acoustic Receiver Modeling: Turbulent Flow Modeling and Acoustic Analysis - new

D. Groulx[1], A. Bharath[1], S. Campbell[1]
[1]Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

The field of underwater acoustics research is constantly growing with the ongoing improvement of acoustic measuring techniques. An acoustic hydrophone receiver is a passive listening device which is widely used in biological research and sonar technology. The hydrophone however suffers from turbulence generated noise created by its presence in ever faster flow. This work aims to analyze the ...

Chip Drop After Silver Sintering Process

M.H. Poech[1], M. Weiß[1], and K. Gruber[1]

[1]Fraunhofer Institute for Silicon Technology, Itzehoe, Germany

Since a couple of years, sintering becomes more and more important for power electronics. To press a semiconductor under high temperature in silver paste on a substrate promises benefits for durability. Tests with semiconductors of different thickness expose some problems. After the cool down, some of them fall slightly from the substrate. Stress in the boundary layer, caused by different ...

Surface Aeration System Modeling using COMSOL

G. Selembo, P. Selembo, J. Stanton, and G. Paulsen
University of North Carolina
Charlotte, NC

Surface aeration systems are used in the wastewater treatment industry for the transfer of oxygen in the activated sludge process. These systems are capital intensive and also require a significant amount of energy to operate. Scale-up and design of these systems is largely empirical, and due to the size of these systems, modifications for experimental testing can be economically prohibitive. ...

Effects of Forced Airflow Cooling on Laser Beam Heating of Volume Bragg Gratings

S. Kaim[1], B. Anderson[1], G. Venus[1], J. Lumeau[1], V. Smirnov[2], B. Zeldovich[1], L. Glebov[1]
[1]CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
[2]OptiGrate Corp, Oviedo, FL, USA

Forced airflow cooling of a Volume Bragg Grating heated by a laser beam was investigated by means of simulation with COMSOL Multiphysics®. In addition to air cooling of unrestricted airflow, a case of airflow directed by limiting glass plates was investigated. A number of temperature distributions and thermal deformations were obtained in simulations for different rates of airflows. Simulations ...

Optimization of Carbon Nanotube Field Emission Arrays

B. L. Crossley[1], M. Kossler[1], P.J. Collins[1], R. A. Coutu Jr.[1], and L. A. Starman[1]

[1]Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA

Carbon nanotubes (CNTs) have been proven experimentally to be well suited for field emission applications. An optimized triode configured CNT field emission array is developed using the COMSOL Multiphysics Electrostatics Application to adjust five key physical dimensions to investigate the effects on the enhanced electric field at the CNT emitter tips. The five dimensions studied are CNT ...

Finite Element Modeling and Simulation of Electromagnetic Forces in Electromagnetic Forming Processes: Case studies using COMSOL Multiphysics

A. N. Kumar[1], and M. Nabi[1]
[1] Department of Electrical Engineering, Indian Institute of Technology Delhi, India

Electromagnetic Forming (EMF) is a promising and relatively new manufacturing technology having significant advantages over conventional forming processes. A primary characteristic of this process is use of noncontact electromagnetic forces to achieve forming and shaping  of various metal work pieces. Mechanically, this is a high-strain rate forming process. From the modeling and simulation ...

Weak Formulations for Calculating Spin Wave Dispersion Relation in Magnonic Crystals

M. Mruczkiewicz[1]
[1]Adam Mickiewicz University, Poznan, Poland

We study the spin wave excitation (coherent precession of magnetic moments) in periodically arranged magnetic stripes, i.e., in one-dimensional magnonic crystal (MC). Two approaches have been implemented. We have defined a structure that dispersion relation can be obtained using both approaches and compared them. In general, the approach I has to be used for MCs where the exchange interactions ...

Multiphysics Simulation of a Self-heating Paraffin Membrane Microactuator

P. Lazarou[1], C. Rotinat[1]
[1]CEA LIST/DIASI/LRI, Paris, France

A grand variety of microactuator technologies and demonstrators has been introduced during the last years. Of particular interest are the microactuators based on phase change materials and especially paraffin wax, which can volumetrically expand up to 15%, providing high force actuation. The object of this study is the numerical validation of a paraffin microactuator concept by coupling multiple ...

COMSOL Multiphysics® Simulation of the Electrokinetic Effect in Gidrogeology

M. A. Narbut [1], K. V. Titov [1], P. K. Konosavsky [1],
[1] Saint Petersburg State University, Saint Petersburg, Russia

The groundwater flow is accompanied by the electric field with potential called usually the streaming potential or the Self-Potential (SP) to be measured on the ground surface (e.g., Rizzo et al., 2004; Bolève et al., 2007; Jardani et al., 2009). We studied numerically the SP signals associated with pumping test experiments in layered aquifers using COMSOL Multiphysics® software and GWFGEM ...