Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Study of Thermal Evaporation Unit for Phase Change of Liquid Hydrogen Peroxide to Vapor

Z. Jildeh [1], [2], [3], C. Hollenbeck [1], P. Kirchner [1], T. Wagner [2], P.H. Wagner [3], M.J. Schöning [2]
[1] Imagine Engineering GmbH, 50126 Bergheim, Germany
[2] Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, 52428 Jülich, Germany
[3] Soft Matter and Biophysics, Catholic University Leuven, 3001 Leuven, Belgium

Hydrogen peroxide (H2O2) vapor is a preferred medium of sterilization in different fields of industry. Among the fact that it dissociates to oxygen and water (environmentally-friendly), H2O2 vapor possesses strong mircobicidal and sporicidal characteristics. As such, the use of H2O2 vapor as a sterilant has continuously increased in different fields of industry, like in medicine, pharma and food ...

Numerical Modelling of a Free-Burning Arc in Argon. A Tool for Understanding the Optical Mirage Effect in a TIG Welding Device

J-M. Bauchire[1], E. Langlois-Bertrand[1], and C. de Izarra[1]
[1]GREMI, CNRS, Université d’Orléans, Orléans, France

In this paper, we present the numerical modelling of a free-burning arc and its application to the understanding of optical mirage effect which could occur in a TIG (Tungsten Inert Gas) device used in welding applications.

COMSOL Multiphysics® Simulation Integrated into Genetic Optimization

V. Longinotti[1], S. Di Marco[1], S. Pistilli[1], F. Costa[1], M. Giusti[1], G. Gammariello[1], I. Gison[1], G. Latessa[1,2], D. Mascolo[2], A. Buosciolo[1]
[1]Altran Italia, Roma, Italy
[2]Consorzio DeltaTi Research, Milano, Italy

The main topic of this paper is the development of an innovative tool that can be applied in a wide range of complex problems, to simulate, optimize and improve system design especially when dealing with huge numbers of parameters and constraints. The new methodology is obtained by joining the power of COMSOL Muliphysics® simulation with the modern optimization approach of genetic algorithms. ...

Acoustic-Structure Interaction Simulation of a Differential Phase Sensor - new

J. H. Lee[1]
[1]Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE

The idea of application as a hearing device based on a parasitoid fly, Ormia ochracea has been studied extensively recently. This paper addresses another possible application as an underwater directional sensor. In order to study the feasibility of the application, it is necessary to investigate the feasibility of the underwater application of the directional sensor based on the hearing ...

COMSOL Multiphysics® Model of a Solar Dryer - new

E. C. Santos[1], J. H. Sales[1], C. Lima[2]
[1]Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
[2]Instituto Federal da Bahia, Irecê, BA, Brazil

This paper compares the efficiency of a vertical solar dryer vis-à-vis the traditional drying method by the means of a computer simulation. The said program considers geometric, thermal and mechanical effects so as to simulate heat transfer via conduction, convection and radiation. We later ran additional tests with simulated data on the greenhouses(traditional method) so as to compare the ...

Numerical Simulation of a Joule Heating Problem

S.M.F. Garcia[1], and P. Seshaiyer[2]
[1]U.S. Naval Academy, Annapolis, MD, USA
[2]George Mason University, Fairfax, VA, USA

In this work we consider a 1-D mathematical model that describes a heating problem combined with electrical current flows in a body which may undergo a phase change as a result of the heat generated by the current, so-called Joule heating. The model consists of a system of nonlinear partial differential equations with quadratic growth in the gradient. Joule heating is generated by the resistance ...

Estimation of Hydraulic Conductivity for a Heterogeneous Unsaturated Soil Using Electrical Resistivity and Level-Set Methods - new

T. K. Chou[1], M. Chouteau[1], J. S. Dubé[2]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]École de Technologie Supérieure, Montréal, QC, Canada

The estimation of the soil saturated hydraulic conductivity (Ks) is crucial in understanding water flow and transport of contaminants. There are many hydrological techniques available in determining this parameter (constant head method, in-situ soil analysis, etc...). While these techniques can provide quality data points, they are often limited by sparse data sampling and scale. Therefore ...

Evaluation of Efficiency Factors of Commercial Thermoelectric Materials Using COMSOL Multiphysics® Software

K. Cadien [1], S. Seif [1], T. Thundat [1],
[1] Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

We have developed single leg model using COMSOL Multiphysics® software to compute Φ of TE materials without using conventional ZT parameters. The Φ were calculated using parametric programming in PDE by using special probe to capture change in power (∆P), ΔT, and area (A), thus (Φ = ∆P/A*ΔT 2). The obtained results showed that the TE material with highest Φ when the temperatures are between 375 ...

Modelling Heat and Mass Transfer in Microreactor for Methanol to Hydrocarbons

P. A. Delou [1,3], V. Degirmenci [2,3],
[1] Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
[2] University of Warwick, Coventry, United Kingdom
[3] Queen’s University Belfast, Belfast, United Kingdom

Recently, increasing availability of natural gas, due to the shale gas, raises the attention to the conversion of methane. Methanol-to-Hydrocarbons reaction (MTH) plays an important role in this route where methanol synthesized through syngas is converted into hydrocarbons, such as Gasoline. In this study heat and mass transfer for MTH reaction over ZSM-5 as catalyst for an specific microreactor ...

Non-isothermal Flow of CO2 in Injection Wells: Evaluation of Different Injection Modes

O. Silva [1],
[1] Amphos 21 Consulting S.L., Barcelona, Spain

Injection conditions of CO2 at the wellhead may play a major role on the flow behavior through the wellbore. The density and the injection rate reached at the bottomhole are key factors affecting the performance and efficiency of CO2 geological storage. In this work, a model of non-isothermal flow of CO2 in injection wells is developed using COMSOL Multiphysics® software and used to assess ...