Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Modeling of a Counter Flow Plate Fin Heat Exchanger - new

R. Jia[1], J. Hu[1], X. Xiong[2]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA

Plate fin heat exchangers are widely used for heat recovery or cooling purposes in many industries, such as cryogenics, aerospace and automobile industries. This paper developed a numerical model to simulate the heat transfer and fluid flow in a counter flow plate fin heat exchanger and optimize its design parameters. The conjugate heat transfer in the finned plate and fluids in the channels ...

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

Simulation of Cyclic Voltammetry of Ferrocyanide/Ferricyanide Redox Reaction in the EQCM Sensor

H. Kwon, and E. Akyiano
Dept. of Engineering and Computer Science
Andrews University
Berrien Springs, MI

In this paper, the cyclic voltammetry behavior of Ferrocyanide/Ferricyanide, which is commonly used for electrochemical DNA detection experiment, was studied in the commercial EQCM-D setup (Q-sense) using the COMSOL Multiphysics. The model was established in a 3D geometry of QCM liquid cell. The simulation shows depletion of concentration of ferrocyanice following applied electrode ...

Electric Field Calculations for AC and DC Applications of Water Controlled Cable Termination - new

T. Karmokar[1], R. Pietsch[1]
[1]HIGHVOLT Prüftechnik Dresden GmbH, Dresden, Sachsen, Germany

The computation of electric field strength is the state-of-the-art technique for designing and optimizing High-Voltage (HV) equipment. In this research, the equipment under analysis is Cable Termination (CaTr) which is used to apply high-voltage (75 kV – 800 kV AC) on the cable to be tested (Figure 1). The CaTr is based on the principle of linear electric field control using deionised water with ...

Evaluation of Instability of a Low-salinity Density-dependent Flow in a Porous Medium - new

Y. T. Habtemichael[1], R. T. Kiflemariam[2], H. R. Fuentes[1]
[1]Department of Civil & Environmental Engineering, Florida International University, Miami, FL, USA
[2]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

Seawater intrusion into coastal aquifers is usually modeled by using transport models that include account for the effect of variable-density on flow. Variable-density models can be validated with the Henry and Elder benchmark problems. However, when mixed convective flow is simulated under variable density conditions, it is susceptible to physical and numerical instabilities. The purpose of ...

Dynamics of Rotors on Hydrodynamic Bearings

R. Eling[1]
[1]Mitsubishi Turbocharger & Engine Europe, Almere, The Netherlands

This study presents a rotordynamic analysis of a rotor on hydrodynamic bearings using COMSOL Multiphysics®. In this paper, the complexity of the model is gradually increased. Starting point of the analysis is the modal analysis of the rotor in free-free conditions. A Reynolds model is set up to predict the film pressure distribution under shaft loading. Due to the cross coupling terms of the ...

Topology Optimization of Thermal Heat Sinks

J. H. K. Haertel [1], K. Engelbrecht [1], B. S. Lazarov [2], O. Sigmund [2],
[1] Technical University of Denmark, Roskilde, Denmark
[2] Technical University of Denmark, Kgs. Lynby, Denmark

1. Introduction The topology optimization method is becoming increasingly popular as a design tool for multiphysics systems [1,2]. Topology optimization of fluid-thermal systems has been presented for example in [3] for forced convective heat transfer and in [4] for natural convection problems. In this work, topology optimization including density filtering and projection is applied to ...

COMSOL Multiphysics® Software and PV: A Unified Platform for Numerical Simulation of Solar Cells and Modules

M. Nardone [1],
[1] Bowling Green State University, Bowling Green, OH, USA

Introduction: Existing solar cell (photovoltaic, PV) device simulation software is either open source with limited capabilities (1D only) [1,2] or extremely expensive with obscure functionality [3]. PV researchers need an accessible and versatile simulation tool to optimize existing technologies and to reduce the time from concept to prototype for new technologies. This work demonstrates how ...

Heat Transfer and Phase Change Simulation in COMSOL Multiphysics® Software

N. Huc [1]
[1] COMSOL France, Grenoble, France

This session is devoted to phase change modeling in heat transfer simulations. The great interest in phase change comes from the outstanding thermal performance that it enables in particular for cooling or thermal protection applications. Alternatively, phase change can induce most of the energy cost in drying or cooking applications. In all of these cases, a thermal analysis is required to ...