Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

FEM Based Estimation of Biological Interaction Using a Cantilever Array Sensor

S. Logeshkumar, L. Lavanya, G. Anju, and M. Alagappan
PSG College of Technology
Tamil Nadu, India

In the model silicon nanorods are designed as cantilever array and coated with thin film of aluminum or aluminum nitride, to be characterized, thus, adding a detectable mass and altering the cantilever resistance to bending. The simulated results show that when films of different thickness are placed on the cantilever, there is a corresponding change in the resonant frequency and the ...

COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination

M. Olea[1], S. Odiba[1], S. Hodgson[1], A. Adgar[1]
[1]School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom

Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor air quality. They includes acetone, benzene, ethylene glycol, formaldehyde, methylene chloride, ...

Magnetic Liquids for Lab-on-a-chip and Rapid Diagnostics Applications

H. Köser
Yale University

In this presentation we outline our recent work on Magnetic Liquids, and the great number of application areas these are used. Ferrofluids are nanometer sized magnetic particles, covered by a surfactant, suspended in a carrier medium compatible with the surfactant material. Ferrofluids are applicable to a great and ever increasing number of application areas, such as: • Liquid Seals and ...

Design and Modeling of a Micro-active Suspension

T. Verdot, and M. Collet
Dept. of Applied Mechanics, FEMTO-ST Institute, Besançon, France

Nowadays, lightweight materials are widely used to reduce weight and increase available space in moving structures such as cars or aircraft. However, they constitute an intense vibrating environment that can strongly affect the operation of embedded micro-transducers such as frequency generators or inertial sensors. To alleviate this problem, we propose the concept of a Micro-Active Suspension ...

Design and Optimization of an All Optically Driven Phase Correction MEMS Deformable Mirror Device using Finite Element Analysis

V. Mathur[1], K. Anglin[1], V.S. Prasher[1], K. Termkoa[1], S.R. Vangala[1], X. Qian[1], J. Sherwood[1], W.D. Goodhue[1], B. Haji-Saeed[2], and J. Khoury[2]

[1]Photonics Center, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
[2]Air Force Research Laboratory/Sensors Directorate, Hanscom Air Force Base, Massachusetts, USA

Optically addressable MEMS mirrors are required for future high density adaptive optics array systems. We have demonstrated a novel technique of achieving this by actuating low stress Silicon Nitride micro mirrors via cascaded wafer bonded Gallium Arsenide photo detectors on Gallium Phosphide. In the work reported here, we discuss the key design parameters of the device, and present the finite ...

Optical Manipulation of Microscopic Objects

R. Ozawa
Yokohama University

In recent years, optical manipulation using optical radiation pressure has been widely studied. In this study, the radiation pressure exerted on various kinds of microscopic objects with different laser beams was evaluated by COMSOL Multiphysics software. By changing beam shapes, microscopic objects can be trapped and rotated. This paper is in Japanese.

Scaling Effect in Air Gap MOSFET

R.V. Iyer[1], Vinay K.[1], A. R. Kamath[1], A. Goswami[1], A. Sharma[1], A. V. Joshi[1], A. Mishra[1], N. S. Pai[1], S. Chakraborty[1], Rakesh D.[1]
[1]PES Institute of Technology, Bangalore, Karnataka, India

This abstract addresses the effect of scaling in air gap MOSFETs and determination of functional relationship between scaling parameter and sensitivity, frequency response. The modelling of the MOSFET and its simulations has been carried out using COMSOL Multiphysics. An air Gap MOSFET in its simplest form can be imagined to be one obtained by replacing the dielectric in a MOSFET with air. The ...

Design and Analysis of Fluid Structure Interaction for Elbow Shaped Micro Piping System - new

V. S. P. Rajesh[1]
[1]St. Mary's Group of Institutions, Jawaharlal Nehru Technological University, Hyderabad, Telangana, India

Fluid and structure Interaction analysis can be applied to versatile fields of engineering applications, helps in understanding the affects of one material on other, thereby reducing the effect of physical parameters like nonlinear response, vibration in flow channel etc. Rapid development of technology led to the application of this Fluid-Structure Interaction (FSI) in Microfluidics based ...

Mobility of Catalytic Self-Propelled Nanorods Modeling with COMSOL Multiphysics®

F. Lugli[1] and F. Zerbetto[1]
[1]Department of Chemistry “G. Ciamician”, Università di Bologna, Bologna, Italy

A small particle or a nano-sized object placed in a liquid is subject to random collisions with solvent molecules. The resulting erratic movement of the object is known as Brownian motion, which, in nature, cannot be used to any practical advantage both in natural systems (such as biomolecular motors) or by artificial devices. If energy is supplied by external source or by chemical reactions, ...

Evaluation of electric impedance spectra for single bio-cells in microfluidic devices using combined FEMLAB/ELDO modeling

Senez, V., Arscott, S.

This paper describes a simple method to predict the electrical impedance spectrum of single and cultured cells in micro-devices. It can be used for the rapid design of micro-sensors as well as for more fundamental studies about the interactions of electric fields with bio-cells. The finite element (FEMLAB) and the transport lattice (ELDO) methods are coupled through the MATLAB environment for ...

Quick Search