Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Modeling of Dielectrophoretic Forces Acting upon Biological Cells in Silicon Lab-On-Chip Devices

S. Burgarella, M. Bianchessi, and M. De Fazio
Advanced System Technology, R&I e-Health, STMicroelectronics, Agrate Brianza, Italy

Dielectrophoresis (DEP) is a promising method for the automated separation of biological cells in a miniaturized format. This technology allows cells to be manipulated electronically while suspended in a microfluidic channel embedded in a silicon lab-on-chip. In this work, several dielectrophoretic configurations have been designed and fabricated using micro-electro-mechanical-systems (MEMS) ...

Design and Simulation of 3D MEMS Piezoelectric Gyroscope using COMSOL Multiphysics®

T.Madhuranath[1], R.Praharsha[1], Dr.K.Srinivasa Rao[1]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

MEMS is the leading technology which combines both electronic and mechanical devices on a single microchip. Tracing the position of the object is an important problem in engineering. This can be addressed by Gyroscopes. These sensors are used to find orientation and angular velocity. This paper focuses on 3D MEMS Piezoelectric Gyroscope. COMSOL Multiphysics® is used for designing and ...

Simulation of MEMS based Flexible Flow Sensor for Biomedical Application

D. Maji[1], C. P. Ravikumar[2], and S. Das[1]
[1]School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
[2]Texas Instruments (India) Pvt. Ltd., Bangalore, India

Arterial disease, especially Coronary Artery Disease (CAD) is one of the leading causes of premature morbidity and mortality. During the flow, blood interacts with vessel wall mechanically and chemically which modulates the plaque formation in blood vessel leading to coronary artery diseases. Here we propose to simulate a MEMS based flexible flow sensor based on anemometer principle designed to ...

Demonstration of All-Optical NAND Logic Gate Using Photonic Integrated Circuits

J. T. Andrews[1], R. Choubey[1], O P Choudhary[1], N. Malviya[1], A. Patel[1], M. Kumar[1], S. Chouksey[1], J. Solanki[1]
[1]National MEMS Design Center, Department of Applied Physics, Shri G S Institute of Technology & Science, Indore 452003 MP, India

A logic gate performs a certain Boolean logic operation on one or more logical inputs and produces a single logical output. The logic values are either “true” or “false.” Logic gates are bistable devices, that is, they may yield one of these two possible stable outputs. The NAND logic is a universal gate; any logic operation can be performed with various combinations of NAND logics. Many ...

Simulation and Optimization of MEMS Piezoelectric Energy Harvester with a Non-traditional Geometry

S. Sunithamani[1], P. Lakshmi[1], E. E. Flora[1]
[1]Department of EEE, College of Engineering, Anna University, Chennai, India

Piezoelectric energy harvester converts mechanical vibrations into electrical energy via piezoelectric effect. The geometry of the piezoelectric cantilever beam greatly affects its vibration energy harvesting ability [1]. In this paper a MEMS based energy harvester with a non-traditional geometry is designed. The design of the energy harvester consists of a rectangular cantilever structure with ...

Degeneracy Breaking, Modal Symmetry and MEMS Biosensors

H.T.D. Grigg[1], T.H. Hanley[1], B.J. Gallacher[1]
[1]Newcastle University, Newcastle upon Tyne, United Kingdom

This work is concerned with systems possessing cyclic symmetries. In particular, we concentrate on the case in which the medium possesses infinite order cyclic symmetry, while the constitutive relations have cyclic symmetry of a lower order. We investigate the interactions between modes with cyclic symmetry of order n and geometries with underlying cyclic symmetry of order M. Rayleigh's ...

Antenna and Plasmonic Properties of Scanning Probe Tips at Optical and Terahertz Regimes - new

A. Haidary[1], P. Grütter[1], Y. Miyahara[1]
[1]Physics Department, McGill University, Montreal, QC, Canada

A wide variety of near-field optical phenomena such as apertureless near-field scanning microscopy (ANSM) at optical and terahertz (THz) regimes and surface enhanced Raman scattering relies on the electric field enhancement at the end of a sharp tip. Achieving and controlling this electric field enhancement is a key challenge for a wide range of applications such as surface modification, data ...

Air Damping Simulation of MEMS Torsional Paddle - new

N. Mahmoodi[1], C. J. Anthony[1]
[1]University of Birmingham, Birmingham, UK

Viscous damping has a significant effect on dynamic performance of the resonators operating within fluid. This work is aimed to find the viscous damping for MEMS torsional paddle operating in air. Interaction of moving structure with the fluid requires a complicated and challenging analysis. The Fluid-Structure Interaction interface of COMSOL Multiphysics® software is used to study the 2-D ...

Multiphysics Simulation of a Self-heating Paraffin Membrane Microactuator

P. Lazarou[1], C. Rotinat[1]
[1]CEA LIST/DIASI/LRI, Paris, France

A grand variety of microactuator technologies and demonstrators has been introduced during the last years. Of particular interest are the microactuators based on phase change materials and especially paraffin wax, which can volumetrically expand up to 15%, providing high force actuation. The object of this study is the numerical validation of a paraffin microactuator concept by coupling multiple ...

Implementation of ALE Moving Mesh for Transient Modeling of Nanowire Trajectories Caused by Electrokinetic Forces

S.M. Davison, and K.V. Sharp
Pennsylvania State University

Moving nanowires through microfluidic channels under electrokinetic forces can be a valuable technique to aid in the fabrication of certain devices. The trajectories of a nanowire under the influence of an externally applied electric field have been modelled through a straight channel, through a converging channel, and around a 90° corner. In a straight channel, a nanowire initially ...

Quick Search