Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Designing Piezoelectric Interdigitated Microactuators using COMSOL

O. Myers [1], M. Anjanappa [2], and C. Freidhoff [3]

[1] Mississippi State University, Mississippi State, MS, USA
[2] University of Maryland Baltimore County, Baltimore, MD, USA
[3] Northrop Grumman Corporation, Electronics Systems Sector, Baltimore, MD, USA

This paper presents a methodology towards designing, analyzing and optimizing piezoelectric interdigitated microactuators using COMSOL Multiphysics. The models used in this study were based on a circularly interdigitated design that takes advantage of primarily the d33 electromechanical piezoelectric constant coefficient. Because of the symmetric nature of the devices, 2D axisymmetric models ...

Optimal Design of Linear Motor Based on the Simulation of COMSOL Multiphysics

X. Chen
PAL University of Science and Technology, China

Linear motor has a lot of applications, such as magnetic levitation train, electromagnetic weapons. It is a very important research significance. We established a three-dimensional model of linear motor to calculate the magnetic field lines and flux density distribution, and got the electromagnetic force too. We compared the results of simulation using COMSOL and experiment under different ...

Optimizing the Design of Polymer based Unimorph Actuator using COMSOL Multiphysics

V. Tiwari[1], R. Sharma[1], G. Srivastava[1], R. Dwivedi[1]
[1]Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India

Cantilever beam-type transducers have been in great demand and explored widely in the recent years, typically in thin film form because of their sensor and actuator applications. The piezoelectric cantilever is the most preferred structure employed in technological applications. Depending on the required flexural motion and sensitivities, these piezoelectric cantilevers can be used in unimorph, ...

Simple Finite Element Model of the Topografiner - new

H. Cabrera[1], D. A. Zanin[1], L. G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zürich, Zürich, Switzerland

In our recent experiments we are revisiting the topografiner technology for the imaging of surface topography with a resolution of a few nanometers. In these new technique called Near-Field Emission Scanning Electron Microscopy (NFESEM), low-energy electrons are emitted from a polycrystalline tungsten tip via electric-field assisted tunneling. In order to characterize and improve the ...

Thermally Induced-Noise Reduction Using an Electrostatic Force Feedback

H. Lee, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present a method to mitigate the effect of thermally-induced noise in Micro-Electro-Mechanical Systems (MEMS) through a force feedback circuit. Inherent noise-induced vibrations, which would be inconsiderable in macro scale, are considered as a limitation in micro- and nano- scale since it diminishes the high performance of MEMS devices. For instance, depending on the stiffness ...

COMSOL Multiphysics for the Designs and Applications on Biomicrofluidic Chips

I-Fang Cheng[1]
[1]National Nano Device Laboratories (NDL), National Applied Research Laboratories, Taipei, Taiwan

Some types of rare pathogens can be detected and identified in human blood through a low-cost and label-free method. The On-Chip SESR identification process has a fast detection time (about 5 minutes) and a low detection limit. Discrimination of a species is done by sorting red blood cells from bacteria. Simulations of dielectrophoretic (DEP) force, dual layer electrodes, and dynamic separation ...

3D-Modeling of Magnetophoretic Separation of Superparamagnetic Dispersions Using COMSOL Multiphysics® Particle Tracing Module

D. Kleinehanding[1], L. Teich[1], C. Schröder[1]
[1]Department of Engineering Sciences and Mathematics, Computational Materials Science & Engineering (CMSE), University of Applied Sciences Bielefeld, Bielefeld, Germany

Magnetophoresis is a process of great interest for novel applications based on magnetic nanoparticles and colloids. Environmental applications like wastewater treatments and pollutant removal, biomedical applications like protein isolation, drug delivery, magnetic hyperthermia for cancer treatment, and magnetic-particle imaging are just a few of the numerous technological areas which exploit the ...

Study of Pull-In Voltage in MEMS Actuators

P. D. Hanasi[1], B. G. Sheeparamatti[1], B. B. Kirankumar[1]
[1]Basaveshwar Engineering College, Bagalkot, Karnataka, India

Micro cantilevers are the basic MEMS structures, which can be used both as sensors and actuators. The . The objective of this work is to study concept of pull-in voltage and how to reduce the same. Voltage is applied to upper cantilever beam and lower contact electrode is made as ground. By increasing common area between cantilever beam and contact electrode, and also by reducing thickness of ...

Design, Simulation, and Fabrication of Thermal Angular Accelerometers

H. Alrowais [1],
[1] School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

This abstract introduces a sensor design for detecting angular acceleration in a single plane using thermal convection. The working principal of the device is based on probing temperature profile changes along a micro-torus caused by angular acceleration. By properly choosing the locations of the heaters as well as the temperature sensors, the output signal will correlate to in-plane angular ...

Ribbon Formation in Twist-Nematic Elastomers

L. Teresi[1], V. Varano[1]
[1]LaMS - Modelling & Simulation Lab, Università degli Studi Roma Tre, Roma, Italy

Nematic Elastomers (NEs) possess both the elastic properties of rubbers and the orientational properties of liquid crystals. Those two properties makes the configuration of NEs very sensitive to isotropic-nematic phase transition. Our goal is to replicate with numerical experiments the phenomena of shape formation in Twist-Nematic Elastomers (TNEs): a flat bar evolves into a helicoidal shape ...