Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Temperature Propagation during Cell Stacking Processes for Lithium-Ion Cells

G. Liebig [1], P. Bohn [2], L. Komsiyska [1], S. Vasić [1]
[1] NEXT ENERGY EWE-Forschungszentrum, Oldenburg, Germany
[2] AUDI AG, Ingolstadt, Germany

A thermo-physical 3D model of a commercial Li-ion battery was developed and validated. Visualization of the temperature distributions inside a Li-ion cell during cell stacking processes were simulated. Critical temperature levels depend on position, duration and intensity of the thermal stressing. Results show a maximum local temperature of 180 °C at the jelly roll after laser welding for 4 s ...


唐旻 [1], 冯强强 [1], 董一琳 [1]
[1] 上海交通大学,上海,中国

近年来,三维系统级封装技术逐渐成为人们的关注焦点,是下一代集成电路封装设计最有发展潜力的实现方案。然而,热管理是系统级封装技术需解决的关键问题。图1是典型的系统级封装结构,包含堆叠芯片、硅通孔、封装基板、热界面材料以及多层凸点结构。若对该结构的所有细节进行建模,将会消耗巨大的计算资源,导致分析效率非常低下。因此,本论文将封装中的硅通孔层以及凸点层等复杂结构进行等效处理,提取它们在水平和垂直方向上的等效热导率以及等效比热容、等效密度等参数。例如,在建模过程中,采用 COMSOL Multiphysics® 传热模块对硅通孔层的水平方向等效热导率进行提取,边界设置如图2所示,通过仿真得到的热源端温度来推导等效热导率。类似地,垂直方向的等效热导率提取如图3所示。经过上述处理,可将封装中的硅通孔层以及凸点层等复杂结构等效为介质均匀的材料,然后再采用 COMSOL 进行整体封装结构的热仿真 ...

Comparison of Borehole Heat Exchangers (BHEs): State of the Art vs. Novel Design Approaches

P. Oberdorfer, F. Maier, and E. Holzbecher
Applied Geology
Geoscience Centre
Georg-August-University Göttingen
Göttingen, Germany

The efficiency of borehole heat exchangers (BHEs) for geothermal purposes depends not only on material properties but also on their geometrical design. These days most used design consists of two parallel arranged U-shaped pipes which are embedded in a high-conductive shell filling out the borehole. Another common design is a pipe inside of another pipe, with fluid flowing down inside and up ...

Use of COMSOL as a Tool in the Design of an Inclined Multiple Borehole Heat Exchanger

E. Johansson[1], J. Acuña[1], B. Palm[1]
[1]Royal Institute of Technology KTH, Stockholm, Sweden

A field of connected boreholes can be used both for cooling, heating and storage purposes. The boreholes transfer heat to or from the ground, which over time changes the temperature in the ground. It is important that the borehole field is properly sized and evaluated before the construction. This study presents results from borehole field evaluations of inclined boreholes used for cooling ...

Air Flow Effect on the Temperature of a Building Integrated PV-Panel

G. Florides[1], S.A. Kalogirou[1], L. Aresti[1], R. Agathocleous[1], P. Christodoulides[1]
[1]Faculty of Engineering and Technology, Cyprus University of Technology, Limassol, Cyprus

This study examines the effect of air flow between the building integrated PV-panel and the wall. To formulate the heat exchange process for the air flowing between the PV panel and the wall, time-dependent, heat transfer partial differential equations (PDEs) are solved with COMSOL Multiphysics®. It is shown that in summer, the maximum temperature of a PV panel is observed on an east facing ...

Embedded Microfluidic/Thermoelectric Generation System for Self-Cooling of Electronic Devices - new

R. Kiflemariam[1], H. Fekramandi[1], C. Lin[1]
[1]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

A 3D electro-conjugate heat transfer model was made to study an embedded microfluidic/TEG system (μF/TEG) system. An innovative embedded microfluidic/TEG system (μF/TEG) system is proposed which enables a device to be able to provide power to its cooling system eliminating external power input and resulting in energy efficient and more reliable heat removal system. The research identifies ...

Fresh Produce Safety During Hydrocooling: An Engineering Model - new

A. Warning[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Hydrocooling is the process by which warm produce is chilled with water. The chilling of warm produce generates a negative pressure differential between the produce (warm) and (cold) water due to the condensation of water vapor inside the produce which forms a vacuum and can pull in contaminated water through an opening. A porous media based model of water infiltration was developed using a ...

Modeling Self-Potential Effects during Reservoir Stimulation in Enhanced Geothermal System - new

G. Perillo[1], A. Monetti[2], A. Troiano[2], M. G. Di Giuseppe[2], C. Troise[2], G. De Natale[2]
[1]University of Naples Parthenope, Naples, Italy
[2]INGV-Osservatorio Vesuviano, Naples, Italy

Geothermal systems represent a large resource that can provide, with a reasonable investment, a very high and cost-effective power generating capacity. Despite its unquestionable potential, geothermal exploitation has long been perceived as limited, mainly because of the dependence from strict site-related conditions, mainly related to the reservoir rock’s permeability. In this work, SP ...

Simulation of Spiral-Tube Heat Exchangers in COMSOL Multiphysics® Software

K. O. Lund [1], S. M. Lord [2],
[1] Kurt Lund Consulting (COMSOL Certified Consultant), Del Mar, CA, USA
[2] SML Associates, Encinitas, CA, USA

A frequently occurring geometry for heat exchangers is that of a long tube wound into a helix or spiral around a core volume. There is to be heat exchange between the tube and the gases (or solids) in the core. However, the length scales of these two parts of the geometry are very different, thus complicating the interface between the tube and the core processes. Usually, the tube is too ...

Application of COMSOL Multiphysics® Software to Model Temperature Changes in Buildings with PCM Incorporated in Their Elements

N. P. Sharifi [1], A. A. N. Shaikh [1], A. R. Sakulich [1],
[1]Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

Reducing HVAC energy consumption in buildings has provoked a lot of thought and has, subsequently, drawn a lot of attention. Out of the several methods that have been introduced to achieve this goal, the usage of Phase Change Materials (PCMs) in the structural components is one of the very effective ones. However, to find the optimum melting temperature and percentage of PCM for different ...