Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study of the Process, Design, and Operating Parameters Effect on the Efficiency of the Process Mill - new

A. K. Farouk[1]
[1]Department of Mathematics & Natural Science, University of Stavanger, Sandnes, Rogaland, Norway

This study is to investigate the velocity pattern and the velocity magnitude of the cuttings that is being processed in the process mill as a result of the rotating hammers. The process mill consists of a horizontal cylindrical shell equipped with renewable liners and rotating hammers for milling of drill cuttings. An F.E model of the process mill was constructed using dimensions similar to ...

A 2D Model of the Flow in Hydrocyclones - new

B. Chinè[1], F. Concha[2], M. Meneses G.[3]
[1]School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2]Department of Metallurgical Engineering, University of Concepcion, Concepcion, Chile
[3]School of Production Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica

Hydrocyclones are industrial devices used as processing units in fluid and particle technology. A hydrocyclone is an apparatus consisting of a cylindrical or a cylindrical-conical body with a tangential or involute entrance to admit the fluid inside. There are also two opposite exits, the top exit which is the vortex finder and the bottom exit called apex. Fig. 1 shows the schematic of a widely ...

Thermal Natural Convection Simulations with COMSOL Multiphysics® in Comparison with Measurements - new

H. van Halewijn[1]
[1]Fontys University of Applied Physics, Eindhoven, The Netherlands

In a laboratory setup a horizontal rod is heated on one side. By natural convection a stable temperature pattern is developed. Using the Nusselt formulation of the natural convection of cylindrical rods, the temperature distribution can be calculated. Only a good match of the simulations and the measurements can be reached when taking into account all the non-linear physics in the system. In this ...

CFD/Electromagnetics Interactions via Realistic Heat and Mass Transfer to Moist Substrates - new

G. Ruocco[1], M. V. De Bonis[2]
[1]Engineering College, University of Basilicata, Potenza, Italy
[2]I​nstitute of Food Science and Production, National Research Council, Bari, I​taly

Localized convection heat and mass transfer can be intensified and optimized by providing exposure to electromagnetic energy. Conjugate heat and mass transfer are configured by solving the momentum, heat and mass transfer simultaneously in both solid (substrate, comprising of a two-phase chemical species) and fluid (auxiliary air) phases. In this way the heat and mass fluxes vary seamlessly ...

Study of Supercritical Coal Fired Power Plant Dynamic Responses for Grid Code Compliance - new

A. Gil-Garcia[1], I. Kings[1], B. Al-Duri[1]
[1]University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, UK

In clean coal technologies, improving energy conversion efficiency is one of the most important directions. Compared to traditional subcritical power plants, pressure-increased supercritical power plants improve the plant energy efficiency from 35% up to 45%. This work presents a study of the thermodynamic behaviour of the water cycle in coal-fired boilers in response to the changes in energy ...

Fluid Dynamics Analysis of Gas Stream in a Plasma Torch Reactor - new

C. Soares[1], N. Padoin[1], F. A. Cassini[1], M. Sanchez[2]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil
[2]University of Oklahoma, Norman, OK, USA

Plasma technology has potential applications in a wide range of areas, such as microwave reflectors/absorbers, material processing, sterilization and chemical neutralization. The knowledge about the fluid behavior in such systems has a central role, since the stability of the flow in the region of the electrical arc is essential for the development of a well-behaved torch. In this work, a ...

An Overview of Impellers, Velocity Profile and Reactor Design - new

P. Patel[1], P. Vaidya[1], G. Singh[2]
[1]Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]Indian Oil Corporation Limited, Faridabad, Haryana, India

This paper presents a simulation approach to develop a model for understanding the mixing phenomenon in a stirred vessel. The mixing in the vessel is important for effective chemical reaction, heat transfer, mass transfer and phase homogeneity. In some cases, it is very difficult to obtain experimental information and it takes a long time to collect the data. Such problems can be solved using ...

Validation of DNS Techniques for Dynamic Combined Indoor Air and Constructions Simulations Using an Experimental Scale Model

T. van Goch, and A. van Schijndel
Eindhoven University of Technology, Eindhoven, Netherlands

This paper presents a study on the application of Direct Numerical Solving (DNS) techniques using an experimental scale model. COMSOL Multiphysics is promising in solving dynamic heat and air transport. The experiments can be extremely useful as benchmark for CFD codes.

Model and Simulation of a Tunable Birefringent Fiber Using Capillaries Filled with Liquid Ethanol

C. Zeringue, and G.T. Moore
Air Force Research Laboratory, Kirtland Air Force Base, NM, USA

Conventional polarization maintaining fiber is constructed using a pair of borosilicate rods on either side of the fiber core. Current manufacturing processes prohibit the construction of fibers with the required accuracy needed for applications requiring precision birefringence. Through the use of COMSOL, this paper describes simulated results of fiber with a mutually orthogonal secondary set of ...

Material Flow around a Bobbin Tool for Friction Stir Welding

J. Hilgert, L. Hütsch, J. Dos Santos, and N. Huber
GKSS Forschungszentrum GmbH, Geesthacht, Schleswig-Holstein, Germany

This study presents an approach to model the material flow around a bobbin tool for Friction Stir Welding (FSW). In this CFD model the aluminum is treated as a highly viscous non Newtonian shear thinning liquid. The model is formulated in a 3D Eulerian frame. The temperature field and the desired torque acting on the tool are taken from a 3D thermal pseudo mechanical model implemented in ...

Quick Search