Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of the Impact of Blood Vessels Flow on the Temperature Distribution During Focused Ultrasound Exposure

K.C.P. Li, B.E. O'Neill, and E. Sassaroli
Methodist Hospital Research Institute, Houston, TX, USA

Focused ultrasound systems guided by magnetic resonance imaging (MRI) and thermometry have recently made possible the non-invasive thermal ablation of benign tumors such as uterine fibroids in clinical practice. Much more work is however required in order to make this technology available for the treatment of other forms of cancer. One of the major difficulties is associated with the presence of ...

Large Scale Invasion Of New Species And Of Genetic Information

O. Richter, F. Suhling, and S. Moenickes
Technische Universität Braunschweig, Germany

The spatial dynamics of the invasion of new species and genetic dispersal is studied under the presumption of rising temperature by using a coherent approach of coupled partial differential equations of the reaction diffusion type. The nonlinear reaction terms model the population dynamics, genetic exchange and competition. Temperature reaction norms of reproduction rates are conferred by a two ...

Simulation of Deformed Solid Particles in Constrained Microfluidic Channel

M. Cartas-Ayala[1], R. Karnik[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Characterization of particles has numerous applications in science and diagnostics. Recently, particle passage through constrained microchannels has been proposed to characterize particles based on their passage velocity. Nevertheless, there is no clear understanding of how the physics in this system interact. Here we quantify the effects of the flow around the particle by simulating the passage ...

3D-FEA of the Relationship between the Occiput and Sphenoid in the Osteopathic Paradigm - new

Y. Chiesa[1]
[1]Istituto Superiore di Osteopatia, Milan, Italy

The concept of cranial Primary Respiratory Mechanism (MRP) is used by osteopathic practitioners to explain the perceptual characteristics arising from the clinical palpation approach of the human skull. The theoretical apparatus and the same MRP existence is always element of controversy among the scientific community. The results arising from this study highlight the intrinsic capability of ...

Simulation of Interstitial Nanoparticle Flow for Development of Tumor-On-A-Chip Device

J. Park [1], M. P. Vidal-Meza [1], R. Zhou [1], S. Barua [1], C. Wang [1],
[1] Missouri University of Science & Technology, Rolla, MO, USA

A simulation was performed to investigate the flow behaviors of drug delivery nanoparticles in a tumor-on-a-chip microfluidic device, which mimics a tumor cell having endothelial cells with micro-sized gaps. The Navier-Stokes equation and the convection-diffusion equation were used to model the flow field and the time-dependent particle distribution in the device, respectively. We investigated ...

Development of a Single Cell Trapping Microfluidic Device

L. Weng [1], F. Ellett [1], J. F. Edd [1], M. Toner [1,2],
[1] Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
[2] Shriners Hospital for Children, Boston, MA, USA

Array-based technologies are important for many applications in drug discovery, microbiology and cell biology. A large-scale array of single cells allows high-throughput monitoring of behaviors of individual cells in parallel, avoiding the lack of cell specificity inherent to bulk measurement methods. Here, we designed a passive-pumping microfluidic device for trapping cells in an array and used ...

Prediction of Time of Death Using a Heat Transport Model

J.L. Smart[1], and M. Kaliszan[2]
[1]University of Kentucky, Paducah, KY, USA
[2]Medical University of Gdansk, Gdansk, Poland

COMSOL Multiphysics® 4.0 was used to study conductive and convective heat transfer from the human eyeball to the surrounding air. Postmortem temperature decay curves were collected in eyeballs of numerous human corpses. Of course, these curves represent only a portion of the complete temperature decay curve, since the pathologist is able to start collecting temperature data only after some ...

Modeling Bacterial Transport and Removal in a Constructed Wetland System

E. Engström, B. Balfors, and R. Thunvik
Royal Institute of Technology, Stockholm, Sweden

In this study we evaluate transport, retention and subsistence of Escherichia coli (E. coli), a common fecal indicator bacteria, in a model (2x1m) of a constructed wetland. Transport occurs in the unsaturated and saturated zone. Inactivation is accounted for as a kinetic first-order process. Retention is assumed to be dominated by solid-air-water interface straining and is modeled with a kinetic ...

Three-Dimensional Finite Element Modeling of Current Density in Maternal Transthoracic Defibrillation

A. Jeremic[1], J. Potts[2], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada
[2]McMaster University Hospital, Hamilton, ON, Canada

Although the cardiac arrest in pregnancy is a rare event it can have significant impact in terms of age of mother, mortality of unborn children and consequently long-term effect. One of the commonly used procedures in resuscitation is defibrillation. With recent advances in understanding pathophysiologies in pregnant women it became more obvious that previous studies should be extended to ...

Cellular Scale Model of Stratum Corneum

R. Santoprete[1], B. Querleux[1]
[1]L'Oréal, Paris, France

To better quantify the impact of the morphological and mechanical properties of the main constituents of the stratum corneum (SC, the outermost layer of the skin) on its overall mechanical behavior, we developed a biomechanical model of the SC at a cellular scale, based on in vitro morphological and mechanical data. The sensitivity analysis quantified the relative impact of the mechanical and ...