Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Analysis of an Enzymatic Biofuel Cell: The Orientations of a chip inside a blood artery

C. Wang[1], Y. Parikh[1], Y. Song[1], and J. Yang[1]
[1]Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Output performance of an implantable enzymatic biofuel cell (EBFC) with three- dimensional highly dense micro-electrode arrays has been simulated with a finite element analysis approach. The purpose of this research is to optimize the orientation of this EBFC chip inside a blood artery such that the mass transport of glucose around all the micro-electrodes can be improved and hence output ...

Simulation of Current Density for Electroplating on Silicon Using a Hull Cell

F. Lima[1], U. Mescheder[1], H. Reinecke[3]
[1]Hochschule Furtwangen University, Furtwangen, Baden-Wuerttemberg, Germany
[3]Institut für Mikrosystemtechnik, Freiburg im Breisgau, Baden-Wuerttemberg, Germany

Electrodeposition has a major advantage over other methods of thin film deposition. It allows deposition at atmospheric pressure and room temperature, requiring inexpensive equipment. However, there are several parameters which can influence an electroplated metal layer quality. The current density distribution is taken into consideration. The Hull cell is an electrodeposition tank with a ...

Analysis of 3-D Printed Structural Components for Cube Satellites - new

C. Herzfeld[1]
[1]SPAWAR Systems Center (SSC) ATLANTIC, Charleston, SC, USA

Additive manufacturing uses 3D printing to build physical parts from CAD-based designs. The technology includes fused deposition modeling (FDM) and selective laser sintering (SLS) methods. 3-D printing is of particular interest for smaller, one-of-a-kind, customizable products. A cube satellite (CubeSat) containing fiber reinforced SLS parts has been successfully launched (Ref 1). Lower ...

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface electrode in the 3D Electrostatics application mode of COMSOL Multiphysics® 3.5a. The values of the electric ...

Numerical Modeling of Pit Growth in Microstructure

S. Qidwai[1], N. Kota[2], V. DeGiorgi[1]
[1]Naval Research Laboratory, Washington, DC, USA
[2]Science Applications International Corporation, Washington, DC, USA

Pitting corrosion is a complex phenomenon where rates of: i) chemical reactions, ii) diffusion of various species involve in those reactions, and iii) species dissolution at the metal-electrolyte interface are fully dependent on each other, except under special conditions or assumptions. One set of such conditions is that: a) there are no species concentration gradients due to the rapid mixing ...

Primary Current Distribution Model for Electrochemical Etching of Silicon through a Circular Opening

A. Ivanov [1], U. Mescheder [1],
[1] Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany

Primary current distribution model for anodization of low-doped p-type silicon through a circular opening in frontside insulating mask is developed. The model is applied in two regimes of the process – pore formation and electropolishing – by definition of current density dependent functions of porosity and dissolution valence based on experimental results. As found also experimentally, ...

CFD Modeling and Analysis of a Planar Anode Supported Intermediate Temperature Solid Oxide Fuel Cell - new

N. Lemcoff[1], M. Tweedie[2]
[1]Rensselaer Polytechnic Institute Hartford, Hartford, CT, USA
[2]Enthone, West Haven, CT, USA

A planar anode-supported intermediate temperature solid oxide fuel cell operating on syngas fuel at 750°C was analyzed in this study. The effects of varying syngas fuel inlet compositions on species and temperature distributions, water gas shift reaction rate, potential for carbon formation and electrochemistry were considered. A 2-D COMSOL® model was developed which included separate defined ...

Heat Generation Modeling of Two Lithium Batteries: from the Cell to the Pack in COMSOL Multiphysics® Software

J. Stoudmann [1], R. Rozsnyo [1], T. Mackin [2], J. Dunning [2]
[1] Haute École du paysage, d'ingénierie et d'architecture, Genève, Switzerland
[2] California Polytechnic State University, San Luis Obispo, CA, USA

A thermal model to predict the heat generation during the charge and discharge of a battery pack is an essential tool to manage the thermal behavior, performance and life of the batteries. In this work, a battery cell is modeled in COMSOL Multiphysics® using the Batteries and Fuel Cells module.

Computational Optimization of Battery Grid for Efficiency and Performance Improvement

V. Panneerselvam [1], R. C. Thiagarajan [1]
[1] ATOA Scientific Technologies Pvt Ltd, Bengaluru, India

Battery grids are critical system used in automobile, renewable energy, medical devices and mobile phones. Research efforts are directed to increase energy density, longevity and reduce the cost. This paper is related to computational optimisation of lead acid battery for efficiency and performance improvement. Battery grid is the precursor for the active material and current distribution in ...

Mathematical Modeling of a Lithium Ion Battery

R. E. White[1], and Long Cai[2]
[1]R.E. White & Associates LLC, Columbia, South Carolina, USA
[2]Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA

The existing lithium ion battery model in COMSOL’s Multiphysics  software is extended to include the thermal effects. The thermal behavior of a lithium ion battery is studied during the galvanostatic discharge process with and without a pulse. The existing lithium ion battery model in COMSOL 3.5a is extended by adding an energy balance and the temperature dependence of properties of ...