Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Analysis of 3-D Printed Structural Components for Cube Satellites - new

C. Herzfeld[1]
[1]SPAWAR Systems Center (SSC) ATLANTIC, Charleston, SC, USA

Additive manufacturing uses 3D printing to build physical parts from CAD-based designs. The technology includes fused deposition modeling (FDM) and selective laser sintering (SLS) methods. 3-D printing is of particular interest for smaller, one-of-a-kind, customizable products. A cube satellite (CubeSat) containing fiber reinforced SLS parts has been successfully launched (Ref 1). Lower ...

Charge-Discharge Studies of Lithium Iron Phosphate Batteries

A. K. R. Paul [1], R. D. Pal [2],
[1] CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
[2] Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India

A lithium-ion battery comprises of two intercalating electrodes separated by a membrane, sandwiched between aluminum and copper current collecting plates. The battery performance depends upon several parameters and its operating conditions. In this work we developed a model for a lithium iron phosphate battery and validated our results with experimental charge-discharge curves. We however note ...

Simulation of Nanopores in Capacitive Energy Extraction Based on Double Layer Expansion (CDLE)

E. Ruiz-Reina [1], F. Carrique [2], A.V. Delgado [3], M.M. Fernández [3],
[1] Department of Applied Physics II, University of Málaga, Málaga, Spain
[2] Department of Applied Physics I, University of Málaga, Málaga, Spain
[3] Department of Applied Physics, University of Granada, Granada, Spain

Capacitive energy extraction based on double layer expansion (CDLE) is a new method devised for extracting energy from the exchange of fresh and salty water in porous electrodes. First suggested by D. Brogioli, it is enclosed in a group of emergent technologies jointly known as Capmix methods. The CDLE technique is based on the fact that the capacitance of the electric double layer (EDL) ...

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface electrode in the 3D Electrostatics application mode of COMSOL Multiphysics® 3.5a. The values of the electric ...

Simulation of Cyclic Voltammetry of Ferrocyanide/Ferricyanide Redox Reaction in the EQCM Sensor

H. Kwon, and E. Akyiano
Dept. of Engineering and Computer Science
Andrews University
Berrien Springs, MI

In this paper, the cyclic voltammetry behavior of Ferrocyanide/Ferricyanide, which is commonly used for electrochemical DNA detection experiment, was studied in the commercial EQCM-D setup (Q-sense) using the COMSOL Multiphysics. The model was established in a 3D geometry of QCM liquid cell. The simulation shows depletion of concentration of ferrocyanice following applied electrode ...

State of Charge (SOC) Governed Fast Charging Method for Lithium Based Batteries

F. Naznin[1]
[1]TVS Motor Company Ltd., Hosur, Tamil Nadu, India

The proposed State of Charge (SOC) governed fast charging method for secondary lithium based batteries charges a battery many times faster than the normal Constant Current-Constant Voltage (CC-CV) charging and reduces the side-effects generally accompanied by various fast charging methods. The proposed charging algorithm takes into account the varying internal impedance of the battery at ...

Modeling of Supercapacitor

G. Madabattula[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Low cost high energy density batteries that can be charged and discharged rapidly are required in a number of applications. Tapping energy from renewal resources such as solar, wind and tide requires rapidly generated energy to be first stored and then used round the clock. Storing energy of a moving vehicle as it slows down and recovering it to accelerate the vehicle later can significantly ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance - new

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

Simulation of Current Density for Electroplating on Silicon Using a Hull Cell

F. Lima[1], U. Mescheder[1], H. Reinecke[3]
[1]Hochschule Furtwangen University, Furtwangen, Baden-Wuerttemberg, Germany
[3]Institut für Mikrosystemtechnik, Freiburg im Breisgau, Baden-Wuerttemberg, Germany

Electrodeposition has a major advantage over other methods of thin film deposition. It allows deposition at atmospheric pressure and room temperature, requiring inexpensive equipment. However, there are several parameters which can influence an electroplated metal layer quality. The current density distribution is taken into consideration. The Hull cell is an electrodeposition tank with a ...

Modeling of Charge Transport in Ion Bipolar Junction Transistors

A.V. Volkov[1], K. Tybrandt[1], I.V. Zozoulenko[1], M. Berggren[1]
[1]Organic Electronics, ITN, Linköping University, Norrköping, Sweden

Modeling of an ion bipolar junction transistor (IBJT) is performed using the COMSOL Multiphysics® software. Our model describes the IBJT which was developed and characterized [1]. The IBJT under consideration consists of an anion-selective collector and emitter, a cation-selective base and a neutral junction. The physical model is based on Poisson and Nernst-Planck (PNP) equations. A two ...

1 - 10 of 181 First | < Previous | Next > | Last