Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Contactless Power and Data Transfer for Multiple Nonlinear Loads

H.P. Schmidt [1], U. Vogl[1]
[1]UAS HAW Amberg-Weiden, Amberg, Germany

For the design of an inductive power and data transfer electromagnetic calculation are carried out. A transfer system is considered for loads that are distributed across some distances. For example, such loads are adjustable speed drives that are found in factory automation and intra-logistic. Physical properties of the inductive transfer are modeled via COMSOL. Lumped parameters are deduced ...

Using the Electrical Field Analysis for Assessment of the Influence of Paper Insulation on Discharge Initiation in Oil

P. Rozga[1], D. Hantsz[1]
[1]Technical University of Lodz, Lodz, Poland

Conclusions about the influence of paper insulation on the electrical discharge initiation in mineral oil may be drawn on the basis of experimental studies. However, in some cases, these conclusions may be supported by electrical field analysis. Determination of maximum values of electrical field stress in the vicinity of model electrode setups may bring a new information about initiation ...

AC Electroosmosis and Dielectrophoresis for Trapping Spherical Particles between Rectangular and Triangular Electrodes

S. Narayan[1], H. Francis[1], S. Ghonge[1], D.N. Prasad[1], A. Sethi[1], S. Banerjee[1], S. Kapur[2]
[1]Department of Physics, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Andhra Pradesh, India
[2]Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Andhra Pradesh, India

We describe methods and results of simulations done for predicting behavior of particles in an aqueous solution under an applied AC electric field on electrodes of rectangular and triangular shapes. Here the two major effects which come into play are Dielectrophoresis and AC Electroosmosis. Two simulations have been presented, one for rectangular and one for triangular shaped electrodes. We have ...

Simulation of a Single-Sided Magnetic Particle Imaging Device with COMSOL Multiphysics®

K. Gräfe[1], J. Mrongowius[1], T.M. Buzug[1]
[1]Institute of Medical Engineering, University of Luebeck, Germany

For the MPI imaging process, superparamagnetic iron oxide nanoparticles (SPIONs) are used as tracer material. The particles are excited by a sinusoidally varying magnetic field. A field-free point (FFP) is generated by the superposition of two magnetic fields. The FFP is important for the imaging process, since only the SPIONs in the FFP and its direct neighbourhood are essential for the ...

Three-Dimensional Numerical Study of the Flow Past a Magnetic Obstacle

M. Rivero[1], O. Andreev[2], A. Thess[3], S. Cuevas[4], T. Fröhlich[1]
[1]Institute of Process Measurement and Sensor Technology, Ilmenau University of Technology, Ilmenau, Germany
[2]Helmholtz-Zentrum Dresden-Rossendorf e. V., Institut für Sicherheitsforschung Abteilung Magnetohydrodynamik, Dresden, Germany
[3]Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany
[4]Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México

Flows of electrically conducting liquids in external magnetic fields are present in several applications. In this kind of flow, the inhomogeneous magnetic field creates a breaking force on the conducting fluid. As a result, a stagnant zone is formed in the zone affected by the localized field so that the fluid flows around it. Wakes in magnetohydrodynamic flows present interesting challenges ...

Cryogenic Magnetic Shield Modeling & Verification

H.J. van Weers[1], C. Bruineman[2], G. Muckus[3]
[1]SRON, Netherlands Institute for Space Research, Utrecht, The Netherlands
[2]Scientec, Utrecht, The Netherlands
[3]University of Utrecht, Utrecht, The Netherlands

In ESA's Cosmic Vision program, the Japanese SPICA satellite is a mission of opportunity in the M-class, with the SAFARI instrument being one of the next generation space-borne astronomy instruments being developed to take advantage of SPICA’s cryogenically cooled 3-m class primary mirror. The SAFARI instrument will use large-format arrays of Transition Edge Sensor (TES) bolometers read-out with ...

Modeling the ELENA Electron Cooler with COMSOL Multiphysics® Software - new

G. Tranquille[1]
[1]CERN, Geneva, Switzerland

ELENA is a small cooler decelerator ring at CERN which will be built to increase substantially the number of usable antiprotons delivered to experiments for studies with antihydrogen and antiprotonic nuclei. COMSOL Multiphysics® software has been used to completely model the ELENA electron cooling device in 3D. We have taken advantage of the different physics-based modules of COMSOL ...

On the Influence of Cancellous Bone Structure upon the Electric Field Distribution of Electrostimulative Implants - new

U. Zimmermann[1], R.Bader[2], U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Department of Orthopaedics, University Medicine Rostock, Rostock, Germany

Since the 1980s, the accelerating effect of electromagnetic fields on bone regeneration is used to treat complicated fractures and bone diseases. At the University of Rostock, an electrostimulative hip revision system is developed, basing on the method of Kraus-Lechner. This method requires an electric fields between 5 and 70 V/m. The bone used for the simulations consisted of two homogenous ...

Numerical Analysis of the Response of Thick Wires to Extreme Dynamic Electro-Mechanical Loads - new

R. Cunrath[1], M. Wickert[2]
[1]Fraunhofer EMI, Efringen-Kirchen, Germany
[2]Fraunhofer EMI, Freiburg im Breisgau, Germany

Research at Fraunhofer EMI addresses the response of materials in extreme dynamic loads. Besides mechanical or thermal loads, intense electric pulse currents also represent an extreme dynamic load. Experimentally, metallic samples, mainly thick wires, were electro-mechanically loaded with currents up to 400 kA. For this purpose, a test rig containing a high-voltage pulsed power supply and high ...

Modeling of Rotating Magnetic Field Eddy Current Probe for Inspection of Tubular Metallic Components

T. V. Shyam[1], B. S. V. G. Sharma[1], K. Madhusoodanan[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Rotating Magnetic Field Eddy current technique is a promising technique for inspection of flaws in metallic tubular components. Three primary coils, 120 degrees apart in space, are excited with three phase current source, by virtue, a rotating magnetic field polarised in radial direction is generated. This radial field interacts with metallic tube and generates ...