Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Dynamic Simulation of a Coaxial Magnetic Gear Using Global ODE's and the Rotating Machinery, Magnetic Interface

M. Ostroushko [1], W. Zhang [1], W. M. Rucker [1],
[1] Institute of Theory of Electrical Engineering, University of Stuttgart, Stuttgart, Germany

The coaxial magnetic gear is a good alternative to classic mechanical gears. The magnetic gear has high mechanical durability, overload protection and lower noise, than a mechanical gear [1,2]. A static model of a magnetic gear [3,4] is used for simulation of the magnetic fields and mechanical forces in the steady state. For the dynamic characteristic of the magnetic gear, i.e. a run-up, slowing ...

Topographic Effects on Radio Magnetotelluric Simulations on Levees: Numerical Modeling for Future Comparison With Fields Results

R. Duval[1], C. Fauchard[1], R. Antoine[1]
[1]ERA23-IFSTTAR, Laboratoire des Ponts et Chaussées de Rouen, CETE-Normandie Centre, France

We study the topography influence of levees on the electric resistivity signal obtained with the Radio-Magnetotelluric method. Field measurements have been modeled with COMSOL, using the AC/DC and RF Modules. A levee situated in Orléans along the Loire river (France) has been considered in order to design a model tacking account of the skin depth and the incident wavelength, keeping a constant ...

Electromagnetic Actuators Modeling, Simulation and Optimization

O. Craciun[1], V. Biagini[1], G. Mechler[1], G. Stengel[1], C. Reuber[2], A. van der Linden[3]
[1]ABB Corporate Research, Ladenburg, Germany
[2]ABB Calor Emag, Hanau, Germany
[3]COMSOL, Göttingen, Germany

Introduction: Medium voltage reclosers are representing nowadays an important link between transmission power systems and low voltage grids. With a high level of renewable energy penetration, the medium voltage networks are becoming bidirectional. Therefore, the associated switching devices must ensure the protection of newer types of power systems as well as new types of loads. The optimal ...

Parametric Model Of An Air-Core Measuring Transformer

D. Herceg
Faculty of Technical Science, Novi Sad, Serbia

Power grid voltages and currents may be distorted due to presence of harmonics. Measurements of such voltage with harmonics may be performed using newly developed instrument with a small air-core transformer based probe as the input unit. The probe must be shielded against unknown external electromagnetic fields. At the same time, the probe must remain linear throughout the range of frequencies. ...

Modelling of a Differential Sensor in Eddy Current Non-destructive Evaluation

A. Rosell[1], and G. Persson[2]
[1]Volvo Aero Corporation, Trollhättan, Sweden
[2]Chalmers University of Technology, Göteborg, Sweden

Interaction between the probe and a defect in eddy current non-destructive evaluation is studied. Evaluation of sensor signal response is the basis for the calculation. In this work a differential sensor is considered and the problem regarded here is problem 8 from the testing of electromagnetic analysis methods (TEAM) workshops. The truncation, referring to the position of the outer ...

External Field Induced Flow Patterns in Microscale Multiphase Flows

D. Bandyopadhyay[1], A. Sharma[1], S. Timung[1], V. Tiwari[1], T. K. Mandal[1]
[1]Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on the interfacial morphologies and their transitions, the phenomenon termed electrohydrodynamics. The literature ...

Analysis of Forces acting on Superparamagnetic beads in fluid medium in Gradient Magnetic Fields

U. Veeramachaneni[1], and R.L. Carroll[1]

[1]Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA

Superparamagnetic micro beads offer some  attractive applications in biological and biomedical fields. Some of the important applications include manipulation and separation of cells, isolation of specific cells, active drug delivery, magnetic cell separation, separation of proteins, and application of mechanical forces to cells, etc. A COMSOL Multiphysics model is developed in 2D ...

Current Density, Electric Field and AC Loss Simulation of Mono Block and Single Layer Polygonal HTS Cable Using COMSOL Multiphysics

G. Konar[2], R. K. Mandal[1], and N. Chakraborty[2]
[1]Electrical Engineering Department, Seacom Engineering College, Dhulagar,West Bengal, India
[2]Power Engineering Department, Jadavpur University, Kolkata, West Bengal, India

High temperature super conducting (HTS) cables are gaining attentions for their ability to transmit more power compared to their convention counterparts with essentially no resistance and electromagnetic emissions. They are also appropriate for solving the grid congestion problem in the power corridors with their reduced size and weight. But the AC loss that occurs in the HTS cables reduces the ...

Using the Electrical Field Analysis for Assessment of the Influence of Paper Insulation on Discharge Initiation in Oil

P. Rozga[1], D. Hantsz[1]
[1]Technical University of Lodz, Lodz, Poland

Conclusions about the influence of paper insulation on the electrical discharge initiation in mineral oil may be drawn on the basis of experimental studies. However, in some cases, these conclusions may be supported by electrical field analysis. Determination of maximum values of electrical field stress in the vicinity of model electrode setups may bring a new information about initiation ...

Numerical Optimization of Heating for High-Speed Rotating Cup by Means of Multiphysics Modeling and its Experimental Verification - new

K. Kyrgyzbaev[1], M. Willert-Porada[1], M. Terock[1]
[1]University of Bayreuth, Chair of Materials Processing, Bayreuth, Germany

The physics of rotating cups and disks is an important research subject in many areas of engineering. The rotating cup/disk has been employed in many industrial applications such as spin-coating of phosphor on television screens or photoresist films on silicon wafer, concentrating solutions by evaporation, centrifugal atomization of metal melts, and glass flakes production. In this work the ...