See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
AC/DC Electromagneticsx

The Swelling Responsiveness of pH-Sensitive Hydrogels in 3D Arbitrary Shaped Geometry

K. J. Suthar[1], D. C. Mancini[2], M. K. Ghantasala[3]
[1]Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
[2]Physical Sciences and Engineering, Argonne National Laboratory, Argonne, IL, USA
[3]Department of Mechanical Engineering, Western Michigan University, Kalamazoo, MI, USA

The pH-sensitive hydrogels are responsive to the pH of surrounding solution, which often resemble to biomaterials. Recently, pH-sensitive hydrogels are widely used in various devices as sensing media. We present the simulation of swelling characteristic of 3D-arbitarary-geometry, pH ... Read More

Experimental Investigations and Numerical Simulation of Electrothermally Actuated Micro-gripper

B. K. S. Kishor[1], T. Ramesh [1],
[1] NIT Trichy, Tiruchirappalli Tamil Nadu, India.

At the micron-level, thermal actuation exerts larger forces compared to the widely-used electrostatic actuation. To obtain large displacements at low voltage the principle of Electro Thermal actuation is used. It works on the principle of selective non-uniform Joule heating which results ... Read More

Dynamic Simulation of a Coaxial Magnetic Gear Using Global ODE's and the Rotating Machinery, Magnetic Interface

M. Ostroushko [1], W. Zhang [1], W. M. Rucker [1],
[1] Institute of Theory of Electrical Engineering, University of Stuttgart, Stuttgart, Germany

The coaxial magnetic gear is a good alternative to classic mechanical gears. The magnetic gear has high mechanical durability, overload protection and lower noise, than a mechanical gear [1,2]. A static model of a magnetic gear [3,4] is used for simulation of the magnetic fields and ... Read More

COMSOL在斜井和水平井阵列感应响应计算中的应用

仵杰 [1], 史盼盼 [1],
[1] 西安石油大学,西安,陕西,中国

斜井和水平井中阵列感应响应特性研究是测井数据正确解释的基础。在斜井和水平井中,井轨迹可能以任意角度进出水平地层,阵列感应测井响应计算是复杂的三维电磁场数值计算。基于 COMSOL Multiphysics® 软件的 AD/DC 模块开发完成斜井和水平井中的阵列感应响应三维数值计算方法。详细计算分析水平井和斜井中井位置、目的层厚、目的层电导率、围岩电导率以及目的层与围岩电导率对比度对阵列感应测井响应的影响。结果表明,水平井的阵列感应测井响应特性取决于层厚、电导率对比度、子阵列间距、仪器距层界面距离等多种因素。当层厚大于仪器分层厚度时,水平井响应与直井响应接近 ... Read More

微波干燥电磁场、多相传输及大变形三维耦合模型

张春 [1], 朱铧丞 [1], Ashim Datta [1],
[1] 四川大学,成都,四川,中国

引言:微波干燥过程涉及多物理场的耦合,物理过程十分复杂。不仅有被加热物质的形态改变,还有气态、液态和固态三相的相互作用。为了更清楚地理解微波干燥过程,本模型将电磁场、多相流和物理变形用相应的方程耦合到一起建模分析,并用相应的物理参数表征微波干燥过程。(图1) COMSOL Multiphysics® 的使用:借鉴微波加热接口土豆模型,添加气体和固体传热接口以及自定义方程,用方程和参数实现多物理场耦合。实验模型中,干燥物为土豆,且被视为多孔弹性介质。物质变形用相应的矩阵来表征。 结果:在仿真结果的基础上,利用家用微波炉干燥土豆,设计实验 ... Read More

Computational Study on Transcutaneous Frontal Nerve Stimulation: Simplification of Human Head Model

E. Salkim [1], A. N. Shiraz [1], A. Demosthenous [1],
[1] Electronic and Electrical Department, University College London, London, UK

I. INTRODUCTION Migraine is a neurological disorder which affects nearly 15% of the population and it has been estimated that the European Community spends about €27 billion in a year. Its symptoms may be categorized as attacks of often severe, throbbing head pain with sensory ... Read More

Temperature Distribution in High Voltage Dummy Cable

G.Y. Sun[1], O. Sekula[1], and C. Albanbauer[1]
[1]Brugg Kabel AG, Brugg, Switzerland

A 2D model of coupled electricthermal application is used to calculate the temperature distribution in a high voltage dummy cable laid in free air, where no high voltage is applied. Resistive loss heats the cable while the surrounding air cools it down. The steady-state condition is ... Read More

Design of ESS-Bilbao RFQ Linear Accelerator

J. L. Muñoz [1], D. de Cos [1], I. Madariaga [1], I. Bustinduy [1]
[1] ESS-Bilbao, Bilbao, Spain

The design of ESS-Bilbao RFQ (RadioFrequency Quadrupole) linear accelerator cavity using COMSOL Multiphysics is presented. The work includes geometry definition, electrostatics, electromagnetic and thermomechanical coupled simulations. The main part of the work corresponds to the ... Read More

Effect of a High Frequency Field on the Electric Double Layer Surrounding a Biomolecule in a Fluid new

M. Riou[1], C. Maedler[1], S. Erramilli[1], P. Mohanty[1]
[1]Boston University, Boston, MA, USA

Biosensors based on silicon nanowires are of great interest for ultrasensitive biomolecular recognition of disease specific markers for early stage diagnosis [1]. However, there are limitations on the performance of these nanosensors in solutions at high ionic strength. This is because ... Read More

Electromagnetic Well Logs Simulated with the COMSOL® RF Module on a Cluster new

D. Swaminathan[1], G. Minerbo[1], K. Pathak[1]
[1]Drilling and Production Group, Schlumberger, Houston, TX, USA

Introduction Computer simulations are widely used for the interpretation and inversion of electromagnetic measurements in well logging. Until recently, simulated logs have been computed with approximate 1D or 2D models. By using the COMSOL® RF Module installed on a cluster, we show ... Read More