See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
2009 - Bostonx

Modeling of Drying of Cellular Ceramic Structures: Coupled Electromagnetic and Multiphase Porous Media Model

A. Dhall[1], G. Peng[2], G. Squier[2], M. Geremew[3], L. Bogaczyk[2], J. George[3], W.A. Wood[3], and A.K. Datta[1]
[1]Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
[2]Manufacturing Technology & Engineering, Corning Inc., Sullivan Park, Corning, New York, USA
[3]Corporate Research, Corning Inc., Sullivan Park, Corning, New York, USA

Cellular ceramic substrates are extensively used for pollution control systems in vehicles. The manufacturing process of them can involve microwave drying. In this study, we describe the development of a modeling framework for the microwave drying process of these substrates. The ... Read More

Linear Convection and Conduction in Cylinders of Water Exposed to Periodic Thermal Stimuli

R.E. Tosh[1], and H.H. Chen-Mayer[1]
[1]National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Primary reference standards for determining absorbed dose to water in radiotherapy beams used at cancer clinics and hospitals ultimately must make reference to the temperature change in water produced by ionizing radiation. The most direct experimental technique for this purpose is water ... Read More

Negative Thermal Expansion Materials: Thermal Stress and Implications for Composite Materials

M.J. Jakubinek[1,2], C.A. Whitman[2,3], and M.A. White[1,2,3]
[1]Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
[2]Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia, Canada
[3]Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada

There is considerable interest in the possibility of combining NTE materials with normal (positive) thermal expansion materials, to reduce the potential of failure of a material or component due to thermal stress fracture. Finite element analysis (FEM) is used to explore the overall ... Read More

The Effect of a Correlated Surface Roughness and Convection on Heat Conduction

A.F. Emery[1]
[1]Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA

Heat conduction through a slab, 0 ≤ x ≤ W is one dimensional. However, if one of the edges, say x=0, is rough the conduction will be two dimensional. The two dimensionality varies with the correlation length with a maximum at a length approximately 10% of the slab width. ... Read More

A Study of Lubricating Flows in MEMS Bearings

E. Gutierrez-Miravete[1], and J. Streeter[2]

[1]Department of Engineering and Science, Rensselaer at Hartford, Hartford, Connecticut, USA
[2]Optiwind, Torrington, Connecticut, USA

The bearing and shaft are part of a safe and arm device constructed as an assembly by a multi-layer additive/subtractive plating and planarization processes (EFAB technology). Devices are constructed by a multi-layer additive/subtractive planarization process. This paper evaluates the ... Read More

Simulation of Convection in Water Phantom Induced by Periodic Radiation Heating

H.H. Chen-Mayer[1], and R. Tosh[1]
[1]Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Water calorimetry is employed to establish a primary reference standard for radiation dosimetry by measuring the temperature rises in a water phantom (a cube of about 30 cm x 30 cm x 30 cm) subjected to a beam of ionizing radiation.  We use COMSOL Multiphysics to model the ... Read More

Finite Element Analysis of Microscale Luminescent Glucose Sensors in the Skin Dermis

S. Ali[1], and M. McShane[1]
[1]Department of Biomedical Engineering, Texas A&M University-College Station, Texas, USA

With the rising predominance of diabetes, successful management of blood glucose levels is increasingly important. Key efforts have focused on the development of optical microscale glucose sensing systems based on the encapsulation of glucose oxidase within microspheres coated with ... Read More

Wireless Interaction of Neighboring Two Arm Archimedes Spiral Coils in the RF Electromagnet Range

A. Kalinowski[1]
[1]Naval Undersea Warfare Center/ Division Newport, Newport, RI, USA

The paper addresses a class of problems for modeling and consequently simulating the electromagnetic field radiation pattern from two arms Archimedes spiral coils. The frequency spatial wavelengths relative to the coil dimensions are in a range where the  ... Read More

Optimization of a Thermal Actuator for Low Power/Low Cost Applications

R. Zúñiga-Quesada[1], M. Vílchez-Monge[1], P. Vega-Castillo[1]
[1]Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

This work describes the study of a thermal actuator and modifications to the materials employed in order to decrease power consumption and implementation costs. For this study, we worked on improving the thermal actuator described in the work of T. Ebefors. The criteria for choosing the ... Read More

Reliability Evaluation for Static Chamber Method at Landfill Sites

H. Ishimori[1], K. Endo[1], and M. Yamada[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

In this study, COMSOL Multiphysics was used for the reliability evaluation for static chamber method at landfill sites. Static chamber method, which measures landfill gas emission fluxes, is widely used at landfill sites for the monitoring of greenhouse gas emission such as methane and ... Read More