The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Shift into gear

This model demonstrates the ability to simulate Multibody Dynamics in COMSOL. It comprises a multilink mechanism that is used in an antique automobile as a gearshift lever. It was created out of curiosity to find out how large forces are on the individual components. The model uses flexible parts, i.e. the Structural Mechanics Module was used along with the Multibody Dynamics Module.

Pinched Hemispherical Shell

This example studies the deformation of a hemispherical shell, where the loads cause significant geometric nonlinearity. The maximum deflections are more than two magnitudes larger than the thickness of the shell. The problem is a standard benchmark, used for testing shell formulations in a case which contains membrane and bending action, as well as large rigid body rotation.

Adhesion and Decohesion of Indenting Ball

A steel ball is pressed down against a rubber membrane. When the contact pressure exceeds a certain value, the two parts start sticking together. When the ball is retracted, the membrane is pulled upwards in the bonded region. During the retraction, the bond is partially broken. This happens when the stresses exceed the limits specified in the decohesion law.

Beam Section Calculator

The Beam Section Calculator app allows you to evaluate cross section data for a wide range of American and European standard beams. Given a set of forces and moments acting on the section, you can also compute a detailed stress distribution. Calculated cross section data can also easily be extracted for use as input data for beam analyses in COMSOL Multiphysics. The app is built upon the ...

Thermally Loaded Beam

In this example you will build and solve a 3D beam model using the 3D Beam interface. This model shows how a thermally induced deformation of a beam is modeled. Temperature differences are applied across the top and bottom surfaces as well as the left and right surfaces of the beam. The calculated solution is compared to the analytical solution.

Truss Tower Buckling

Buckling analysis is the search for the critical compressive load beyond which structures become unstable. The Truss Tower Buckling analysis application simulates the buckling of a truss tower under vertical compressive loads to provide the critical compressive load. With the app, you can compute and analyze the buckling load for a tower under different conditions of geometry, i.e., various ...

Scordelis-Lo Roof Shell Benchmark

In this example a thin curved membrane is built and solved using the Shell interface. This model is a widely used benchmark model denoted the Scordelis-Lo roof. The computed maximum z-deformation is compared with the value given in Proposed Standard Set of Problems to Test Finite Element Accuracy, Finite Elements in Analysis and Design, 1985.

In-Plane Framework with Discrete Mass and Mass Moment of Inertia

In this model, you build and solve a 2D beam model using the 2D Structural Mechanics Beam interface. This model describes the eigenfrequency analysis of a simple geometry. A point mass and point mass moment of inertia are used in the model. The two first eigenfrequencies are compared with the values given by an analytical expression.

Instability of a Space Arc Frame

This model illustrates the instability of a space arc frame under concentrated vertical loading. A small lateral load is applied to break the symmetry of the structure. Members in the frame are modeled using geometrically nonlinear beam elements. The results are compared with available literature data.

Bike Frame Analyzer

The reliability of a bike frame can be estimated by analyzing the structural stress subjected to different load cases. This app leverages LiveLink™ for SOLIDWORKS® to interactively update the geometry while computing stress analyses. Using this app, you can easily test different configurations of a bike frame for different cases of dimensions, material, and loads. The app computes the stress ...

61 - 70 of 70 First | < Previous | Next > | Last