Application Gallery

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Electroosmotic Micromixer

Microlaboratories for biochemical applications often require rapid mixing of different fluid streams. At the microscale, flow is usually highly ordered laminar flow, and the lack of turbulence makes diffusion the primary mechanism for mixing. While diffusional mixing of small molecules (and therefore of rapidly diffusing species) can occur in a matter of seconds over distances of tens of ...

Knudsen Minimum

When a constant pressure difference drives flow through a narrow constriction between parallel plates (or through a cylindrical tube), the flow rate exhibits a characteristic minimum as the absolute pressure at the inlet is reduced. This phenomenon is commonly referred to as Knudsenā€™s minimum, and occurs as a result of the rarefaction of the gas. The observation of a minimum in flow rate for ...

Oscillating Droplet

Cemented tungsten carbides are hard metals used in steel cutting tools. They are produced by heating a powder consisting typically of tungsten carbide (WC) grains and cobalt (Co) grains. When the powder is heated, the cobalt melts but the tungsten carbide remains solid. The liquid cobalt glues the tungsten carbide grains together and forces air to flow out of the material. When the medium is ...

Optimization of a Tesla Microvalve

This model performs a topological optimization for a Tesla microvalve. A Tesla microvalve inhibits backwards flow using friction forces rather than moving parts. The design can be optimized by distributing a specific amount of material within the modeling domain. The goal is to maximize the ratio of the pressure drop for the forwards and backwards flow across the device.

Electrowetting Lens

The contact angle of a two-fluid interface with a solid surface is determined by the balance of the forces at the contact point. In electrowetting the balance of forces at the contact point is modified by the application of a voltage between a conducting fluid and the solid surface. In many applications the solid surface consists of a thin dielectric deposited onto a conducting layer; this is ...

Star-Shaped Microchannel

This model presents a time-dependent study of a microchannel that is used to infuse and flush another piece of equipment with a fluid. The pressure at the five inlets varies sinusoidally as functions of time, and the velocity vector at the outlet is studied. The model uses an extruded prism mesh, which reduces the computational time and memory requirements.

Viscous Catenary

The catenary is the geometrical shape that corresponds to the curve followed by an idealized chain or cable supported at both ends and hanging under its own weight. The viscous catenary problem describes the motion of a cylinder of highly viscous fluid, supported at its ends as it flows under gravity. In the last decade this problem has generated significant theoretical and experimental interest ...

Rotating Channel

A lab-on-a-chip platform can be realized on a rotating disc by designing channels and other features to use the Coriolis or centrifugal forces to manipulate the flow. These forces are controlled by changing the angular velocity of the disc, so the platform is programmed by using a controlled sequence of angular velocities. In a microchannel, the centrifugal force induces a parabolic flow profile ...

Lamella Mixer

At the macroscopic level, systems usually mix fluids using mechanical actuators or turbulent 3D flow. At the microscale level, however, neither of these approaches is practical or even possible. This model demonstrates the mixing of fluids using laminar-layered flow in a MEMS mixer. This model analyzes the steady-state condition of the fluid flow as well as the convection and diffusion of a ...

Electroosmotic Flow in a Biochip

Miniature laboratories are required to efficiently analyze the information in human DNA. Such laboratories could facilitate tailor-made diagnoses and treatment of hereditary diseases for each individual. One problem that arises in these lab-on-a-chip devices lies in the transport of the liquid samples and other solutions, which move very small channels. One way of transporting the fluid in ...

Quick Search