The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Phase Separation

Phase separation occurs when a binary system is quenched from its stable, homogeneous one-phase state into the two-phase region of its phase diagram. The spontaneous separation of two immiscible fluids is sometimes referred to as spinodal decomposition. Each phase tends to separate into pure components. This benchmark model takes two initially mixed, immiscible phases and observes their ...

Coriolis Flow Meter: FSI Simulation in the Frequency Domain

A Coriolis flow meter, also known as a mass flow meter or an inertial flow meter, is used to measure the mass flow rate of a fluid traveling through it. It makes use of the fact that the fluid's inertia through an oscillating tube causes the tube to twist in proportion to the mass flow rate. Typically, the density and thereby the volumetric flow rate can also be assessed using the device. This ...

Swirl Flow Around a Rotating Disk

Swirl flow is an application that involves steady rotational flow around an axis. Rather than modeling this process in 3D, COMSOL Multiphysics provides a 2D axisymmetric interface where the flow in the rotational direction is still included in the equations. This example shows the effect of a rotating cylinder on the flow in a container. Such applications are often used in chemical kinetic ...

Stationary Incompressible Flow over a Backstep

This tutorial model solves the incompressible Navier-Stokes equations in a backstep geometry using the Laminar Flow interface. A characteristic feature of fluid flow in geometries of this kind is the recirculation region that forms where the flow exits the narrow inlet region. The model clearly demonstrates the formation of such a region, which is best displayed by visualizing the flow ...

Flow in a Hydrocyclone

Cyclones are used in a variety of applications ranging from the mining industry to vacuum cleaners. The flow in a cyclone is characterized by a very strong swirl, which makes it difficult to simulate. In this tutorial example, the v2-f turbulence model is used to simulate the flow in a hydrocyclone. The v2-f turbulence model, which is an extension of the k-ε turbulence model, provides highly ...

Flow in an Airlift Loop Reactor

This example illustrates multiphase flow modeling in an airlift loop reactor. The reactor is filled with water and air bubbles are injected at the bottom through two frits. Due to buoyancy, the bubbles rise, inducing a circulating motion of the liquid. The model specifically investigates the effect of including bubble-induced turbulence.

Transonic Flow in a Sajben Diffuser

In this model the high speed turbulent gas flow in a converging and diverging nozzle is modeled using the High Mach Number Flow interface. The diffuser is transonic in the sense that the flow at the inlet is subsonic, but due to the contraction and the low outlet pressure, the flow accelerates and becomes sonic (Ma = 1) in the throat of the nozzle. After a short region of supersonic flow, a ...

Journal Bearing

Journal bearings are used to carry radial loads, for example, to support a rotating shaft. A simple journal bearing consists of two rigid cylinders. The outer cylinder (bearing) wraps the inner rotating journal (shaft). The new thin-film flow user interfaces of the CFD Module enables lubrication analysis and full elastohydrodynamic simulations. This example shows the pressure distribution in ...

Natural convection in a closed cavity with mass conservation

Only fully compressible flow can guarantee the mass conservation in time in a closed cavity where the temperature increases. This is a simple proof of concept using the "gravity" option available in V5.2A.

3D Supersonic Flow in a Channel With a Bump

This example models 3D supersonic flow, including the effect of a shock, in a straight channel with a small obstacle on one of the walls. As the flow hits the obstacle, shock waves are diffracted from the obstacle and walls of the channel. The propagating shock waves form a pattern in the velocity profile and density distribution. The model makes use of the adaptive mesh refinement feature in ...