The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


The Magnus Effect

The Magnus effect explains the curl that soccer players can give the ball, resulting in the enjoyable goals that we can see in every FIFA World Cup™. This model looks at the Magnus effect in the laminar and turbulent flow regimes for transient and stationary flows. It also discusses the simulation results and relates them to experimental measurements on soccer balls found in the literature. ...

Modeling of Material Heating via the Beer-Lambert Law

This example exemplifies how to model the Beer-Lambert law using the core functionality of COMSOL Multiphysics. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Modeling Laser-Material Interactions with the Beer-Lambert Law](https://www.comsol.com/blogs/modeling-laser-material-interactions-with-the-beer-lambert-law/)".

Modeling Deforming Meshes

This presentation and series of models show how to use the Deformed Mesh interfaces to model small and large translations and rotations of objects.

Sedan Interior Acoustics

This is a model of the acoustics inside a sedan, that is inside a typical hard-top family car. The model sets up sources at loudspeaker locations as well as impedance conditions to model soft absorbing surfaces for the seats, carpet, and roof lining. The model results in plots of the pressure, sound pressure level, and intensity inside the car. These are important tools to visualize the ...

Thermal Impact of a Borehole Heat Exchanger Array

This model shows how to compute an array of borehole heat exchangers (BHEs) for shallow geothermal energy production. The BHEs are simplified as cylindrical heat sinks with a uniform heat extraction rate. The array is embedded into a layered subsurface model with groundwater flow in one of the layers. For more details, please see the blog post "[Modeling Geothermal Processes with COMSOL Software](https://www.comsol.com/blogs/modeling-geothermal-processes-comsol-software/) ...

Busbar, AC Analysis

This is a busbar configuration with an AC analysis. The configuration is similar to the introductory tutorial in the book Introduction to COMSOL Multiphysics. However, two conductors are added to represent a more realistic case of magnetic fields surrounding the busbar. The results include Lorentz forces, induced currents, magnetic flux, and temperature.

Shape Optimization of a Capacitor Design

This example exemplifies how to optimize the design of a capacitor through optimization. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Changing the Dimensions of a Model Using Shape Optimization](https://www.comsol.com/blogs/changing-the-dimensions-of-a-model-using-shape-optimization/)".

Using COMSOL Models Together with Curve Fitting

This example exemplifies how curve fitting can be performed in COMSOL Multiphysics®, and how this can be applied to your modeling. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Curve Fitting of Experimental Data with COMSOL Multiphysics](https://www.comsol.com/blogs/curve-fitting-of-experimental-data-with-comsol-multiphysics/)".

Design Sensitivities in a COMSOL Model

This example exemplifies how to compute the design sensitivities of your COMSOL Multiphysics® model. A more detailed description of the modeling process can be seen in the blog post "[Computing Design Sensitivities in COMSOL Multiphysics](https://www.comsol.com/blogs/computing-design-sensitivities-in-comsol-multiphysics/)".

Axial Homopolar Induction Bearing in 3D

This model illustrates the working principle of an axial homopolar induction bearing. An electrically conducting rotor rotating in a magnetic field produced by a permanent magnets induces eddy currents on the conducting rotor. The eddy currents, in turn, produce a magnetic field that opposes the magnetic fields by the magnets and induces a force that opposes the motion of the rotor. The axial ...

First
Previous
1–10 of 13