How to Create Outstanding Sound Performance in Vehicles

Alfred Svobodnik | April 4, 2016

Today, we welcome Managing Director Dr. Alfred J. Svobodnik of Konzept-X GmbH, a COMSOL Certified Consultant and developer of multidisciplinary virtually optimized industrial design technology (M-voiD® technology). MP3 players, smartphones, and tablets allow us to listen to our favorite music almost everywhere. While driving in a car, we should also enjoy the highest sound quality. Learn how to use simulation to reproduce sound in one of the most difficult environments — a vehicle — to design better automotive sound systems.

Read More

Caty Fairclough | March 31, 2016

Two professional chefs stand in a classroom, closely observing a soft-boiled egg. What may initially sound like a cooking class is actually part of a physics course offered at the Technische Universiteit Eindhoven (TU/e) in the Netherlands. Using COMSOL Multiphysics, students are investigating the science behind cooking the perfect soft-boiled egg. See how this innovative blend of simulation research and food science is teaching students how to build and test models.

Read More

Walter Frei | March 30, 2016

Whenever solid materials are heated enough, they will melt and then vaporize to a gas. Certain materials will even go directly from the solid to the gas phase, a process referred to as sublimation or ablation. If the material is heated strongly enough, there will be significant material removal. Today, we will look at how you can model this process in COMSOL Multiphysics.

Read More

Angela Straccia | March 29, 2016

Are you solving turbulent flow problems in your CFD analyses? Then you may be familiar with the large computation time that can result from difficulties in finding the numerical solution. Such difficulties are caused by nonlinearities that arise in the turbulence model equations. Viscosity ramping can help decrease the computation time by solving for higher viscosities and using the solutions as initial conditions for the problem at lower viscosities. We’ll show you how to implement this technique in COMSOL Multiphysics.

Read More

Categories

Bridget Cunningham | March 28, 2016

When you are new to the COMSOL Multiphysics® simulation software, it is important to have access to resources that can help you get started with the software quickly. The installation and introduction manuals provide useful details, covering the basics of the modeling environment as well as some more advanced topics. Starting with version 5.2, the Simplified Chinese installation option now offers access to a number of these manuals in versions that are translated into Chinese.

Read More

Categories

Walter Frei | March 24, 2016

In today’s blog post, we will introduce a procedure for thermally modeling a material with hysteresis, which means that the melting temperature is different from the solidification temperature. Such behavior can be modeled by introducing a temperature-dependent specific heat function that is different if the material has been heated or cooled past a certain point. We can implement this behavior in COMSOL Multiphysics via the Previous Solution operator and a little bit of equation-based modeling. Let’s find out how…

Read More

Lauren Sansone | March 23, 2016

Ready, set, simulate! If you are looking to improve your multiphysics simulation skills, are new to COMSOL Multiphysics and want to advance fast, or want to get inspired by other innovators, then this all-encompassing event is for you. Join us and thousands of other engineers and scientists for the COMSOL Conference 2016 and bring your modeling and product development knowledge to the next level. Read on for more details.

Read More

Categories

Walter Frei | March 22, 2016

Whenever you are modeling coils with the AC/DC Module in COMSOL Multiphysics, you need to consider what type of boundary conditions to use to truncate your modeling domain. In this blog post, we will introduce the different boundary conditions that you can use and how to choose between them.

Read More

Categories

Caty Fairclough | March 21, 2016

When designing tall, slender truss towers topped with heavy loads, engineers may want to account for buckling. This requires calculating the critical compressive load of the structure at hand. Simulation is a time- and cost-efficient way to generate such results. Now, with simulation apps, this process is becoming even faster. Those without simulation expertise can easily run their own tests to calculate the critical compressive load for different truss tower configurations.

Read More

Fabrice Schlegel | March 17, 2016

When you think of a stout beer, one type that may come to mind is Guinness® beer. This stout is very special, noticeable by its dark body and famous white head. The dynamics of the foam alone are interesting enough to write a series of blog posts about. Although I don’t drink Guinness® beer (I’m a fan of IPA), I found the longstanding debate about whether its bubbles are rising or sinking while the beer settles makes an interesting simulation.

Read More

Categories

Walter Frei | March 16, 2016

Thermal curing is the process of temperature-induced chemical change in a material, such as the polymerization of a thermoset resin. This process is relevant, for example, when a precursor resin is heated and hardens during the manufacturing of composites. You can often assume that the material does not flow during curing, which simplifies the analysis. Thermal curing is very easy to model within the core functionality of COMSOL Multiphysics, as we will show in this blog post.

Read More


Categories


Tags

1 8 9 10 11 12 107