Plasma Module

Software for Modeling Low-Temperature, Non-Equilibrium Discharges

Plasma Module

A square coil is placed on top of a dielectric window and is electrically excited, while a plasma is formed in an argon-filled chamber beneath. The plasma is sustained via electromagnetic induction where power is transferred from the electromagnetic fields to the electrons.

Tailor-Made to Simulate Low-Temperature Plasma Sources and Systems

The Plasma Module is tailor-made to model and simulate low-temperature plasma sources and systems. Engineers and scientists use it to gain insight into the physics of discharges and gauge the performance of existing or potential designs. The module can perform analysis in all space dimensions – 1D, 2D, and 3D. Plasma systems are, by their very nature, complicated systems with a high degree of nonlinearity. Small changes to the electrical input or plasma chemistry can result in significant changes in the discharge characteristics.

Plasmas – A Significant Multiphysics System

Low-temperature plasmas represent the amalgamation of fluid mechanics, reaction engineering, physical kinetics, heat transfer, mass transfer, and electromagnetics – a significant multiphysics system, in other words. The Plasma Module is a specialized tool for modeling non-equilibrium discharges, which occur in a wide range of engineering disciplines. The Plasma Module consists of a suite of physics interfaces that allow arbitrary systems to be modeled. These support the modeling of phenomena such as: direct current discharges, inductively-coupled plasmas, and microwave plasmas. A set of documented example models, with step-by-step descriptions of the modeling process, along with a user’s guide accompany the Plasma Module.

Capacitively Coupled Plasma Analysis

In-Plane Microwave Plasma

GEC ICP Reactor, Argon Chemistry

Surface Chemistry Tutorial

Benchmark Model of a Capacitively Coupled Plasma

Thermal Plasma

Dielectric Barrier Discharge

Model of an Atmospheric Pressure Corona Discharge

Computing the Ion Energy Distribution Function