Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation-based Analysis of the Spatial Sensitivity Function of an Electrical Capacitance Tomography System

A. Fuchs, and H. Zangl
Institute of Electrical Measurement and Measurement Signal Processing, Graz University of Technology, Graz, Austria

This paper investigates the effects of the soft field character of an Electrical Capacitance Tomography system by means of analyzing the 3D sensitivity distribution of the pipe interior using Finite Element Analysis.The aim of the determined sensitivity is to overcome restrictions caused by the soft field without being forced to use (active) guarding strategies.

Benchmark between CPO (Charged Particle Optics) and COMSOL Multiphysics

J.-M. Barois, and C. Goulmy
PHOTONIS, Brive, France

Streak tubes are widely used in high-speed signal analysis; they give spatial, temporal and intensity information about one single event. Time resolutions of 0.7 pico-second can be achieved and in that time-domain, PHOTONIS tubes are second-to-none.Applications are numerous and range from plasma physic to femtosecond laser applications. In streak tubes, electrons move from the photocathode to the ...

Design of Soft Actuators using Ionic Polymer Metal Composites

D. M. G. Preethichandra1, B. G. L. T. Samaranayake2, A. M. U. S. K. Alahakoon2 and K. Kaneto1
1Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino, Wakamatusu-Ku, Kitakyushu-Shi, Japan
2Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka

This paper characterizes and models the bending motion of the strip-type Ionic Polymer Metal Composites (IPMC) actuators using the theory of Large Deflections of Beams. From here it derives a thermal analogy. The mathematical model has been experimentally verified for an actuator with the dimensions 25mm×2.6mm×0.44 mm.Theoretical and experimental results are compared to show the validity of the ...

Geothermal Water in Oil Reservoirs: A new 2D Model solved with COMSOL

M. C. Suarez-Arriaga1, F. Samaniego2, and J. Bundschuh3
1Faculty of Sciences, Michoacan University, Morelia, Mich., Mexico
2Faculty of Engineering, National University of Mexico, Morelia, Mich., Mexico
3Instituto Costarricense de Electricidad (ICE), Morelia, Mich., Mexico

We developed a new numerical model able to predict the critical oil rate for which oil-producing wells can be invaded by geothermal brine. The model is a single nonlinear partial differential equation (PDE) which depends only on water saturation. This PDE is a 3D-generalization of the classical 1D-Buckley-Leverett model. To solve this model, we used Lagrange-quadratic finite elements into the ...

Teaching Computer-aided Modeling of Biomedical Processes in an Upper Level Undergraduate Course using COMSOL Multiphysics

V. Rakesh, and A. K. Datta
Dept. of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

Computer-Aided Engineering: Applications to Biomedical Processes is a three credit course intended for seniors and juniors in Biological Engineering and Mechanical Engineering at Cornell University with a class size of about 50-55 students.The course introduces finite element modeling using COMSOL Multiphysics to solve biological/biomedical problems to students with a background in transport ...

Geometrical Optimization of Pyrophosphate Concentration in Thermosequencing Platform for DNA Sequencing

H. Esfandyarpour1,2, B. Zheng1, R. F. W. Pease1, and R. W. Davis2
1Center for Integrated Systems, Department of Electrical Engineering, Stanford University, Stanford, CA, USA
2Stanford Genome Technology Center, Stanford, CA, USA

For the past three decades, Sanger’s method has been the primary DNA sequencing technology; however, inherent limitations in cost and complexity have limited its usage in personalized medicine and ecological studies. A new technology called “Thermosequencing” can potentially reduce both the cost and complexity of DNA sequencing by using a microfluidic platform. To optimize the efficiency of ...

Numerical Simulation of Crystallinity Distribution Developed In the Extrusion of Thick Walled Polypropylene Pipe

R. D. Wilcox1, and J. Collier2
1Chemistry Department, Lincoln Memorial University, Harrogate, TN, USA
2Chemical Engineering Department, Florida State University, Tallahassee, FL, USA

In a numerical simulation for crystallinity distribution, a 36 cm diameter polypropylene pipe with 3.7 cm wall thickness consisting of 3 subdomains that include a die, cooling box, and take-off section was modeled in a 2D axisymmetric geometry using COMSOL Multiphysics.The generalized heat transfer module was used to solve for the temperature distribution in the flowing melt using conductive and ...

Computation of Airfoils at Very Low Reynolds Numbers

D. Bichsel1, and P. Wittwer2
1HESSO, Ecole d'Ingénieurs de Genève, Geneva, Switzerland
2DPT, Université de Genève, Geneva, Switzerland

We discuss a new numerical scheme involving adaptive boundary conditions which allows to compute, at very low Reynolds numbers, drag and lift of airfoils with rough surfaces; efficiently and with great precision.As an example, we present the numerical implementation for an airfoil consisting of a line segment. The solution of the Navier-Stokes equations is singular at the leading and trailing ...

Hybrid Finite Element-Finite Volume Algorithm for Solving Transient Multi-Scale Non-Linear Fluid-Structure Interaction during Operation of a Hydraulic Seal

A. Thatte, and R. Salant
Georgia Institute of Technology, Atlanta, GA, USA

This paper presents a hybrid finite element – finite volume algorithm for solving multi-scale fluid-structure interaction during transient operation of a hydraulic rod seal. The elasto-hydrodynamic model consists of several micro-scale and macro-scale analyses types, all incorporated in a single hybrid iterative computational framework to solve these highly coupled nonlinear multiphysics ...

Hemodynamic Therapy of Middle Cerebral Artery Vasospasm Guided by a Multiphase Model of Oxygen Transport

S. Conrad[1,2], P. Chittiboina[3], and B. Guthikonda[3]

[1]Department of Bioinformatics and Computational Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
[2]Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, USA
[3]Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA

Cerebral vasospasm is a complication of subarachnoid hemorrhage and other neurosurgical emergencies that reduce blood flow to the brain. Part of the approach to management of vasospasm is to improve flow through the stenotic areas by reducing by decreasing blood viscosity and enhancing flow through the stenosis. To examine the interaction of these factors, we applied computational fluid dynamics ...

Quick Search

2671 - 2680 of 3644 First | < Previous | Next > | Last