Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Method as an aid to machine design: A Computational Tool

C. Gupta[1], S. Marwaha[1], and M. Manna[1]
[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab, India

The paper provides an overview of the state of art in computational electromagnetic. There are three major ar eas like Design, optimization and material selection for the electric machines. The computational tool based on finite elements is very useful and powerful field simulation techniques available to assist in the design and performance prediction of electric machines. But the complexity in ...

Simulation of Cyclic Voltammetry of Ferrocyanide/Ferricyanide Redox Reaction in the EQCM Sensor

H. Kwon, and E. Akyiano
Dept. of Engineering and Computer Science
Andrews University
Berrien Springs, MI

In this paper, the cyclic voltammetry behavior of Ferrocyanide/Ferricyanide, which is commonly used for electrochemical DNA detection experiment, was studied in the commercial EQCM-D setup (Q-sense) using the COMSOL Multiphysics. The model was established in a 3D geometry of QCM liquid cell. The simulation shows depletion of concentration of ferrocyanice following applied electrode potential. ...

2D Axial-Symmetric Model For Fluid Flow And Heat Transfer In The Melting And Resolidification Of A Vertical Cylinder

S. Morville[1], M. Carin[1], M. Muller[2], M. Gharbi[2], P. Peyre[2], D. Carron[1], P. Le Masson[1], and R. Fabro[2]
[1]Laboratoire LIMATB, Université de Bretagne Sud, Lorient , France
[2]Laboratoire PIMM, Arts et Métiers ParisTech, Paris, France

Laser direct deposition is a process, different from molding or machining, which allows the producing of fully densified and operational components. This technique involves injecting metal powder through a coaxial nozzle into a melt pool obtained by a moving laser beam. The final object is obtained by superimposing the layers created by the process. The roughness of the functional part is ...

Multiphysics Approach of the Performance of a Domestic Oven

N. Garcia-Polanco[1], J. Capablo[1], J. Doyle[1]
[1]Whirlpool Corporation, Cassinetta di Biandronno (VA), Italy

The heat and mass transfer processes occurring in a domestic oven is in detailed analyzed in this work, with the final objective of improving the global energy efficiency of the system. A 3D Finite Element model developed with a Multi-physics approach is validated with the experimental data from the standard test for energy consumption of the European Union (EN 50304:2001). In this test a brick ...

Propagation of Cathode-Directed Streamer Discharges in Air

Y. Serdyuk[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

Streamers are considered as main cause of electrical breakdown in air at atmospheric pressure. A streamer is an ionization wave propagating in neutral gas which is converted into low-temperature plasma behind its front. A streamer model is based on drift-diffusion approach where space and time evolution of densities of charge carriers is considered. It results in three convection-diffusion PDEs ...

Numerical Study of the Self-ignition of Tetrafluoroethylene in a 100-dm3-reactor

F. Ferrero[1], M. Kluge[1], R. Zeps[1], T. Spoormaker[2]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany
[2]Chairman PlasticsEurope Fluoropolymers TFE Safety Task Force, Du Pont De Nemours, Dordrecht, The Netherlands

The self-ignition of tetrafluoroethylene (TFE) caused by contact with hot surfaces has been analyzed with the help of simulations performed with COMSOL Multiphysics®. The current study focuses on large-scale heated reactors for the industrial production of polytetrafluoroethylene (PTFE) from TFE at high pressures. Simulations of the self-heating and consequent self-ignition of TFE in a ...

Effects of Forced Airflow Cooling on Laser Beam Heating of Volume Bragg Gratings

S. Kaim[1], B. Anderson[1], G. Venus[1], J. Lumeau[1], V. Smirnov[2], B. Zeldovich[1], L. Glebov[1]
[1]CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
[2]OptiGrate Corp, Oviedo, FL, USA

Forced airflow cooling of a Volume Bragg Grating heated by a laser beam was investigated by means of simulation with COMSOL Multiphysics®. In addition to air cooling of unrestricted airflow, a case of airflow directed by limiting glass plates was investigated. A number of temperature distributions and thermal deformations were obtained in simulations for different rates of airflows. Simulations ...

Modeling and Simulation of Drug Release Through Polymer Hydrogels

V. Runkana[1], S. Maheshwari[1], S. Cherlo[1], RSR Thavva[1]
[1]Tata Research Development and Design Centre, Tata Consultancy Services Ltd., Pune, Maharashtra, India

Polymer hydrogels are commonly used as carriers or vehicles for the controlled release of drugs, primarily because of their bio-compatibility and because rates of drug release can be controlled by manipulating polymer properties like molecular weight, cross linking ratio, etc. Drugs can be released for prolonged periods of time through polymer hydrogels [1, 2]. Sustained drug release may ...

Modeling the Vanadium Oxygen Fuel Cell

F.T. Wandschneider[1], M. Küttinger[1], P. Fischer[1], K. Pinkwart[1], J. Tübke[1], H. Nirschl[2]
[1]Fraunhofer-Institute for Chemical Technology, Pfinztal, Germany
[2]Karlsruhe Institute for Technology, Karlsruhe, Germany

A two-dimensional stationary model of a vanadium oxygen fuel cell is developed in COMSOL Multiphysics®. This energy storage device combines a vanadium flow battery anode and an oxygen fuel cell cathode. The oxygen reduction reaction generates additional water, leading to a degradation of the catalyst performance over time. A logistic function is introduced to the Butler-Volmer equation in order ...

Modeling 3D Calcium Waves from Stochastic Calcium Sparks in a Sarcomere Using COMSOL Multiphysics®

L. T. Izu[1], Z. Coulibaly[2], B. Peercy[2]
[1]University of California-Davis, Davis, CA, USA
[2]University of Maryland, Catonsville, MD, USA

This paper utilizes the COMSOL Multiphysics® general form PDE interface and MATLAB® to model stochastic calcium waves in a sarcomere (basic unit of a heart cell). The model we present here shows the evolution of waves generated from calcium being released stochastically from sites modeled as point sources. The release sites are distributed on z-disc (planes) in a hexagonal pattern, and their ...

Quick Search