Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Designing and Simulating the Performance Analysis of Piezoresistive Fluid Flow Pressure Sensor

K. PraveenKumar[1], P. Suresh[1], K. Subash[1], M. Alagappan[1], A. Gupta[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India.

In this work, we present the performance analysis of novel micro machined Piezoresistive fluid flow pressure sensor using COMSOL Multiphysics. The principle of the sensing mechanism is based on the deflection of four sensing layers embedded on a thin membrane. The fluid passes through the layer causes the deflection of the sensing layer which measures the pressure of the fluid. The following ...

Dynamic Observation of Magnetic Particles in Continuous Flow Devices by Tunneling Magnetoresistance Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

Dynamic measurement of magnetic particles in continuous flow devices is made very difficult by the limitations imposed by the sensors themselves. Thus, certain sensor layouts are restricted to either number sensitive or spatial resolutive measurements of magnetic particles. We investigate different new strategies to increase the detection threshold and introduce designs accomplishing both: ...

Water spreading anaysis on fabrics surfaces

Fichet, D.1, Lesage, F.1, Ventenat, V.2, Latifi, M.A.2
1 Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, Nancy Cedex, France
2 Centre de recherche Decathlon, Villeneuve d’Ascq, France

This paper deals with experimentation, modelling, simulation and optimisation of a Moisture Management Tester (MMT) which is used to determine the liquid spreading and transfer rates of a fabric. A 3D model was developed and implemented within FEMLAB. It consists of partial differential equations describing the mass balance of water adsorbed on the fibres and water moving in the free volume ...

Optimization of the Temperature Distribution in a Chemical Microreactor using a Multi-Segment Integrated Thin Film Heater

T.R. Henriksen, S. Jensen, U. Quaade, and O. Hansen
Technical University of Denmark

COMSOL Multiphysics has been used to study the effect of different heater design parameters on the temperature distribution in a chemical microreactor. The primary objective of the simulations has been to optimize the temperature uniformity inside the reaction chamber. In the simulations, special attention has been given to how the number, positions and widths of the heater strips relate ...

Design and Modeling of a Micro-active Suspension

T. Verdot, and M. Collet
Dept. of Applied Mechanics, FEMTO-ST Institute, Besançon, France

Nowadays, lightweight materials are widely used to reduce weight and increase available space in moving structures such as cars or aircraft. However, they constitute an intense vibrating environment that can strongly affect the operation of embedded micro-transducers such as frequency generators or inertial sensors. To alleviate this problem, we propose the concept of a Micro-Active Suspension ...

Development and Characterization of High Frequency Bulk Mode Resonators

H. Pakdast, Z. Davis
DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark

This article describes the development of a bulk mode resonator which can be employed for detection of bio/chemical species in liquids.  The goal is to understand the mechanical and electrical properties of a bulk mode resonator device which exhibit high frequency resonance modes and Q-factor. A high resonance frequency is desirable because a small change in the resonator’s mass, for ...

Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy

N. Al Cheikh[1], P. Xavier[1], J. Duchamp[1], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Grenoble, France
[2]Institute of Millimetrics Radio Astronomy (IRAM), Grenoble, France

Superconducting GHz electronics circuits are frequently used in Radio Astronomy instrumentation. The features of these instrumentations can be significantly improved by using tuneable capacitances, which can be realized by electrically actuated, micromechanical bridges (MEMS) made of superconducting Niobium (Nb). In order to analyze the electromechanical behavior of such devices and the intrinsic ...

Multiphysics Modeling of Nanoparticle Detection - Current Status and Collaboration Sought

D. Krizaj[1], I. Iskra[2], Z. Topcagic[1], and M. Remskar[2]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
[2]Institut Jozef Stefan, Ljubljana, Slovenia

We are developing nanoparticle detector for airborn particles. The detection principle is based on condensation of nanoparticles forming micron sized water droplets and detection of the droplets by a capacitive type nanodetector. We have successfully performed some experimental evaluations of the detection principle and are in the stage of optimization of several parts of the system. As shown ...

Particle Flow Control by Magnetically Induced Dynamics of Particle Interactions

F. Wittbracht[1], A. Weddemann[1], A. Auge[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is therefore zero. The theoretical idea will be tested experimentally. Here, additional effects originating from ...

Simulation of Magnetic Beads in on-chip Structures

A. Weddemann, A. Hütten, S. Herth, and M. Schilling
Universität Bielefeld, Fakultät für Physik, Bielefeld

In this work, a system for magnetic and hydrodynamic manipulation of magnetic beads is modelled. A geometry is introduced to assure a good separation behaviour with respect to the magnetic moment of the particles. Different separation mechanisms will be discussed and an estimation of the minimal difference of separable magnetic moments will be given. Further it will be shown, that the ...

Quick Search