Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Accurate geometry factor estimation for the four point probe method using COMSOL Multiphysics

Kalavagunta, A., Weller, R.A.
Vanderbilt University, Nashville, TN

The four-point probe is a tool for measuring the resistivity of a material by contact with its surface. The tool is widely used in the semiconductor industry and has applications both in research and manufacturing. The method though is quite sensitive to various paramaters like the substrate material, probe separation, probe depth etc. In this paper we show that COMSOL multiphysics can be used ...

Analyzing an Unexpected Neutral Current in a Star-Star Transformer Under Steady State Condition

Aurabind Pal[1], Roma Dash[2], Anubhav Rath[3]
[1]Engineers India Limited, New Delhi; Summer Intern, Indian Institute of Technology Bombay,
Maharashtra, India
[2]IOCL,New Delhi; Intern, Indian Institute of Technology Bombay, Maharashtra, India
[3]3ETH Zurich, Switzerland

Finite element modeling of three phase three limbed transformer requires solving of field and circuit variables simultaneously. The accurate modeling thus obtained could predict asymmetry in magnetizing current of three phases due to asymmetry in core of three limbed transformer. This work includes circuit field coupling using COMSOL Multiphysics’ ACDC module. By proper modeling in SPICE it ...

Thermal Analysis of Induction Furnace

A. A. Bhat[1], S. Agarwal [1], D. Sujish[1], B. Muralidharan[1], B. P. Reddy[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India

Induction furnaces are employed for vacuum distillation process to recover heavy metals after electro-refining operation. Induction furnace of suitable heating rate and cooled by passive means are required to be developed for this purpose. It is planned to set up a mock up induction furnace which will simulate the conditions to be realized in actual vacuum distillation furnace for this purpose. ...

Universal Dielectric Response of Atmospheric Ice Using COMSOL Multiphysics®

U.N. Mughal[1], M.S. Virk[1], K. Zaman[1]
[1]Narvik University College, Narvik, Norway

Heterogeneous materials with different phases, are conductive and insulating (dielectric), and are physically present in different natural materials as e.g. atmospheric ice. Jonscher’s proposed ‘universal dielectric response’ is not sufficient for such materials, as it only reflects conductivity as a nonlinear function of frequency, whereas at lower temperatures dipolar vibrations are also ...

Modeling of Resonant Optical Trapping in a 2D Photonic Crystal Cavity

U.P. Dharanipathy[1], N. Descharmes[1], Z. Diao[1], M. Tonin[1], R. Houdré[1]
[1]Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Photonic crystals (PhC) are optical nanostructures that are widely known for their strong spatial and temporal confinement of electromagnetic radiation. Here, we study the resonant optical trapping of a single nanoparticle within a hollow circular photonic crystal cavity. The Electromagnetic Waves (emw) interface of COMSOL Multiphysics® was extensively used during the analysis of all our ...

Quench Propagation and Detection in a YBCO Racetrack

G. Escamez[1], C. Lorin[1], T. Wu[1], P. J. Masson[1]
[1]University of Houston, Houston, TX, USA

High temperature superconductors (HTS) such as YBCO coated conductors show great promise for future applications where high magnetic fields are needed. The superconducting state only exists under a critical surface defined in the (J,T,B) space. Quench is the process by which a current-carrying superconducting conductor changes rapidly and irreversibly from the superconducting state to the ...

A Novel Mechanical Stress Measurement Method Applied to Wind Turbine Rotor Blades

A.H. Hegab[1], J.P. Kaerst[1]
[1]HAWK, University of Applied Sciences and Arts, Goettingen, Germany

Rotor blades for wind turbines are made of GFRP material. They have to be designed to withstand wind and weather over their approximately 20 years of lifetime. The ability to monitor the mechanical stress is crucial in order to reduce maintenance costs and to maximize operational availability. This paper presents the combination of SPICE® and COMSOL Multiphysics®, in order to reduce ...

Characterization of a 3D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong[1], M. Tomes[1], M. Eichenfield[2], M. Jarrahi[1], T. Carmon[1]
[1]University of Michigan, Ann Arbor, MI, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

We present a 3D port sweep method in a lossy silicon photonic crystal resonator to demonstrate the capabilities of COMSOL Multiphysics® for frequency domain analysis with input and output ports. This method benefits from the advantages of the S-parameter analysis to characterize the input and output coupling into the resonator. By pumping one end of the cavity with a CW plane wave, we are able ...

Magnetic Particle Motion in a Gradient Field

U. K. Veeramachaneni, and R. Lloyd Carroll
Department of Chemistry, West Virginia University, Morgantown, WV, USA

A model is presented for predicting the motion of magnetizable particles in a gradient magnetic field, considering the effects of fluidic forces on particles in the micro system.The micro system consists of a gradient magnetic field (such as that produced by a solenoid or permanent magnet), a magnetizable particle, and the fluid surrounding the particle (water).Particles located in the gradient ...

Modeling and Simulation of High Permittivity Core-Shell Ferroelectric Polymers for Energy Storage Solutions

N. Badi[1], R. Mekala[1]
[1]University of Houston, Houston, TX, USA

The dielectric properties of ferroelectric PVDF polymer embedded core-shell (Al-Al2o3) nanoparticle is simulated using COMSOL Multiphysics® software. Significant increase in electrical permittivity of the composite at percolation threshold (K = 2800) is achieved when compared to electrical permittivity of bare polymer (K = 12). Both Maxwell Garnett and Symmetric Bruggeman models gave an ...

Quick Search